Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33975946

RESUMO

Compaction of bulky DNA is a universal issue for all DNA-based life forms. Chloroplast nucleoids (chloroplast DNA-protein complexes) are critical for chloroplast DNA maintenance and transcription, thereby supporting photosynthesis, but their detailed structure remains enigmatic. Our proteomic analysis of chloroplast nucleoids of the green alga Chlamydomonas reinhardtii identified a protein (HBD1) with a tandem repeat of two DNA-binding high mobility group box (HMG-box) domains, which is structurally similar to major mitochondrial nucleoid proteins transcription factor A, mitochondrial (TFAM), and ARS binding factor 2 protein (Abf2p). Disruption of the HBD1 gene by CRISPR-Cas9-mediated genome editing resulted in the scattering of chloroplast nucleoids. This phenotype was complemented when intact HBD1 was reintroduced, whereas a truncated HBD1 with a single HMG-box domain failed to complement the phenotype. Furthermore, ectopic expression of HBD1 in the mitochondria of yeast Δabf2 mutant successfully complemented the defects, suggesting functional similarity between HBD1 and Abf2p. Furthermore, in vitro assays of HBD1, including the electrophoretic mobility shift assay and DNA origami/atomic force microscopy, showed that HBD1 is capable of introducing U-turns and cross-strand bridges, indicating that proteins with two HMG-box domains would function as DNA clips to compact DNA in both chloroplast and mitochondrial nucleoids.


Assuntos
Chlamydomonas reinhardtii/genética , Proteínas de Cloroplastos/genética , DNA de Cloroplastos/genética , Genoma de Cloroplastos/genética , Domínios HMG-Box/genética , Sequências de Repetição em Tandem/genética , Chlamydomonas reinhardtii/metabolismo , Proteínas de Cloroplastos/classificação , Proteínas de Cloroplastos/metabolismo , DNA de Cloroplastos/metabolismo , Regulação da Expressão Gênica , Espectrometria de Massas/métodos , Mutação , Filogenia , Ligação Proteica , Proteômica/métodos
2.
Molecules ; 28(18)2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37764241

RESUMO

The multimolecular assembly of three-dimensionally structured proteins forms their quaternary structures, some of which have high geometric symmetry. The size and complexity of protein quaternary structures often increase in a hierarchical manner, with simpler, smaller structures serving as units for larger quaternary structures. In this study, we exploited oligomerization of a ribozyme cyclic trimer to achieve larger ribozyme-based RNA assembly. By installing kissing loop (KL) interacting units to one-, two-, or three-unit RNA molecules in the ribozyme trimer, we constructed dimers, open-chain oligomers, and branched oligomers of ribozyme trimer units. One type of open-chain oligomer preferentially formed a closed tetramer containing 12 component RNAs to provide 12 ribozyme units. We also observed large assembly of ribozyme trimers, which reached 1000 nm in size.

3.
Chembiochem ; 23(6): e202100573, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35088928

RESUMO

The modular architecture of naturally occurring ribozymes makes them a promising class of structural platform for the design and assembly of three-dimensional (3D) RNA nanostructures, into which the catalytic ability of the platform ribozyme can be installed. We have constructed and analyzed RNA nanostructures with polygonal-shaped (closed) ribozyme oligomers by assembling unit RNAs derived from the Tetrahymena group I intron with a typical modular architecture. In this study, we dimerized ribozyme trimers with a triangular shape by introducing three pillar units. The resulting double-decker nanostructures containing six ribozyme units were characterized biochemically and their structures were observed by atomic force microscopy. The double-decker hexamers exhibited higher catalytic activity than the parent ribozyme trimers.


Assuntos
Nanoestruturas , RNA Catalítico , Tetrahymena , Íntrons , Nanoestruturas/química , Conformação de Ácido Nucleico , RNA/química , RNA Catalítico/metabolismo , Tetrahymena/metabolismo
4.
Nucleic Acids Res ; 48(8): 4041-4051, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32170318

RESUMO

DNA methylation and demethylation play a key role in the epigenetic regulation of gene expression; however, a series of oxidation reactions of 5-methyl cytosine (5mC) mediated by ten-eleven translocation (TET) enzymes driving demethylation process are yet to be uncovered. To elucidate the relationship between the oxidative processes and structural factors of DNA, we analysed the behavior of TET-mediated 5mC-oxidation by incorporating structural stress onto a substrate double-stranded DNA (dsDNA) using a DNA origami nanochip. The reactions and behaviors of TET enzymes were systematically monitored by biochemical analysis and single-molecule observation using atomic force microscopy (AFM). A reformative frame-like DNA origami was established to allow the incorporation of dsDNAs as 5mC-containing substrates in parallel orientations. We tested the potential effect of dsDNAs present in the tense and relaxed states within a DNA nanochip on TET oxidation. Based on enzyme binding and the detection of oxidation reactions within the DNA nanochip, it was revealed that TET preferred a relaxed substrate regardless of the modification types of 5-oxidated-methyl cytosine. Strikingly, when a multi-5mCG sites model was deployed to further characterize substrate preferences of TET, TET preferred the fully methylated site over the hemi-methylated site. This analytical modality also permits the direct observations of dynamic movements of TET such as sliding and interstrand transfer by high-speed AFM. In addition, the thymine DNA glycosylase-mediated base excision repair process was characterized in the DNA nanochip. Thus, we have convincingly established the system's ability to physically regulate enzymatic reactions, which could prove useful for the observation and characterization of coordinated DNA demethylation processes at the nanoscale.


Assuntos
5-Metilcitosina/metabolismo , DNA/metabolismo , Oxigenases de Função Mista/metabolismo , DNA/química , Microscopia de Força Atômica , Nanopartículas/ultraestrutura , Oxirredução
5.
Molecules ; 27(23)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36500390

RESUMO

Naturally occurring ribozymes with a modular architecture are promising platforms for construction of RNA nanostructures because modular redesign enables their oligomerization. The resulting RNA nanostructures can exhibit the catalytic function of the parent ribozyme in an assembly dependent manner. In this study, we designed and constructed open-form oligomers of a bimolecular form of an RNase P ribozyme. The ribozyme oligomers were analyzed biochemically and by atomic force microscopy (AFM).


Assuntos
RNA Catalítico , RNA Catalítico/química , Ribonuclease P/genética , Conformação de Ácido Nucleico , RNA/genética , RNA/química , Microscopia de Força Atômica
6.
Chembiochem ; 22(12): 2168-2176, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33876531

RESUMO

Ribozymes with modular architecture constitute an attractive class of structural platforms for design and construction of nucleic acid nanostructures with biological functions. Through modular engineering of the Tetrahymena ribozyme, we have designed unit RNAs (L-RNAs), assembly of which formed ribozyme-based closed trimers and closed tetramers. Their catalytic activity was dependent on oligomer formation. In this study, the structural variety of L-RNA oligomers was extended by tuning their structural elements, yielding closed pentamers and closed hexamers. Their assembly properties were analyzed by electrophoretic mobility shift assay (EMSA) and atomic force microscopy (AFM).


Assuntos
Nanoestruturas/química , Engenharia de Proteínas , RNA Catalítico/metabolismo , RNA/química , RNA/metabolismo , Tetrahymena/enzimologia
7.
Nucleic Acids Res ; 47(16): 8838-8859, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31329944

RESUMO

Regnase-1-mediated mRNA decay (RMD), in which inflammatory mRNAs harboring specific stem-loop structures are degraded, is a critical part of proper immune homeostasis. Prior to initial translation, Regnase-1 associates with target stem-loops but does not carry out endoribonucleolytic cleavage. Single molecule imaging revealed that UPF1 is required to first unwind the stem-loops, thus licensing Regnase-1 to proceed with RNA degradation. Following translation, Regnase-1 physically associates with UPF1 using two distinct points of interaction: The Regnase-1 RNase domain binds to SMG1-phosphorylated residue T28 in UPF1; in addition, an intrinsically disordered segment in Regnase-1 binds to the UPF1 RecA domain, enhancing the helicase activity of UPF1. The SMG1-UPF1-Regnase-1 axis targets pioneer rounds of translation and is critical for rapid resolution of inflammation through restriction of the number of proteins translated by a given mRNA. Furthermore, small-molecule inhibition of SMG1 prevents RNA unwinding in dendritic cells, allowing post-transcriptional control of innate immune responses.


Assuntos
Macrófagos Peritoneais/imunologia , Degradação do RNAm Mediada por Códon sem Sentido/imunologia , Proteínas Serina-Treonina Quinases/genética , RNA Mensageiro/genética , Ribonucleases/genética , Transativadores/genética , Animais , Fibroblastos/citologia , Fibroblastos/imunologia , Células HEK293 , Células HeLa , Homeostase/genética , Homeostase/imunologia , Humanos , Imunidade Inata , Inflamação , Sequências Repetidas Invertidas , Macrófagos/citologia , Macrófagos/imunologia , Macrófagos Peritoneais/citologia , Camundongos , Camundongos Knockout , Mutação , Cultura Primária de Células , Ligação Proteica , Biossíntese de Proteínas , Domínios e Motivos de Interação entre Proteínas , Proteínas Serina-Treonina Quinases/imunologia , RNA Mensageiro/metabolismo , Ribonucleases/deficiência , Ribonucleases/imunologia , Imagem Individual de Molécula , Transativadores/imunologia
8.
Proc Natl Acad Sci U S A ; 115(38): 9539-9544, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30181280

RESUMO

Due to the small size of a nanoconfinement, the property of water contained inside is rather challenging to probe. Herein, we measured the amount of water molecules released during the folding of individual G-quadruplex and i-motif structures, from which water activities are estimated in the DNA nanocages prepared by 5 × 5 to 7 × 7 helix bundles (cross-sections, 9 × 9 to 15 × 15 nm). We found water activities decrease with reducing cage size. In the 9 × 9-nm cage, water activity was reduced beyond the reach of regular cosolutes such as polyethylene glycol (PEG). With this set of nanocages, we were able to retrieve the change in water molecules throughout the folding trajectory of G-quadruplex or i-motif. We found that water molecules absorbed from the unfolded to the transition states are much fewer than those lost from the transition to the folded states. The overall loss of water therefore drives the folding of G-quadruplex or i-motif in nanocages with reduced water activities.


Assuntos
DNA/química , Quadruplex G , Motivos de Nucleotídeos , Água/química , Modelos Químicos , Nanoestruturas/química , Polietilenoglicóis/química
9.
Angew Chem Int Ed Engl ; 60(37): 20342-20349, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-33987972

RESUMO

The extracellular matrix (ECM) in which the cells reside provides a dynamic and reversible environment. Spatiotemporal cues are essential when cells are undergoing morphogenesis, repair and differentiation. Emulation of such an intricate system with reversible presentation of nanoscale cues can help us better understand cellular processes and can allow the precise manipulation of cell function in vitro. Herein, we formulated a photoswitchable DNA mechanical nanostructure containing azobenzene moieties and dynamically regulated the spatial distance between adhesion peptides using a photoswitchable DNA polymer with photoirradiation. We found that the DNA polymer reversibly forms two different structures, a relaxed linear and shrunken compact form, observed by AFM. Using the mechanical properties of this DNA polymer, UV and visible light irradiation induced a significant morphology change of the cells between a round shape and spindle shape, thus providing a tool to decipher the language of the ECM better.


Assuntos
DNA/metabolismo , Polímeros/metabolismo , DNA/química , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Células HeLa , Humanos , Estrutura Molecular , Processos Fotoquímicos , Polímeros/química , Células Tumorais Cultivadas
10.
Chemistry ; 26(66): 15282-15289, 2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-32830347

RESUMO

The nucleosome is one of the most fundamental units involved in gene expression and consequent cell development, differentiation, and expression of cell functions. We report here a method to place reconstituted nucleosomes into a DNA origami frame for direct observation using high-speed atomic-force microscopy (HS-AFM). By using this method, multiple nucleosomes can be incorporated into a DNA origami frame and real-time movement of nucleosomes can be visualized. The arrangement and conformation of nucleosomes and the distance between two nucleosomes can be designed and controlled. In addition, four nucleosomes can be placed in a DNA frame. Multiple nucleosomes were well accessible in each conformation. Dynamic movement of the individual nucleosomes were precisely monitored in the DNA frame, and their assembly and interaction were directly observed. Neither mica surface modification nor chemical fixation of nucleosomes is used in this method, meaning that the DNA frame not only holds nucleosomes, but also retains their natural state. This method offers a promising platform for investigating nucleosome interactions and for studying chromatin structure.


Assuntos
DNA , Nucleossomos , Microscopia de Força Atômica , Conformação de Ácido Nucleico
11.
Nucleic Acids Res ; 46(3): 1052-1058, 2018 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-29272518

RESUMO

Nucleic acids are biomolecules of amazing versatility. Beyond their function for information storage they can be used for building nano-objects. We took advantage of loop-loop or kissing interactions between hairpin building blocks displaying complementary loops for driving the assembly of nucleic acid nano-architectures. It is of interest to make the interaction between elementary units dependent on an external trigger, thus allowing the control of the scaffold formation. To this end we exploited the binding properties of structure-switching aptamers (aptaswitch). Aptaswitches are stem-loop structured oligonucleotides that engage a kissing complex with an RNA hairpin in response to ligand-induced aptaswitch folding. We demonstrated the potential of this approach by conditionally assembling oligonucleotide nanorods in response to the addition of adenosine.


Assuntos
Adenosina/química , Aptâmeros de Nucleotídeos/química , DNA/química , Nanotubos/química , Oligonucleotídeos/química , RNA/química , Pareamento de Bases , Sequência de Bases , Sítios de Ligação , Sequências Repetidas Invertidas , Ligantes , Nanotecnologia/métodos , Nanotubos/ultraestrutura , Conformação de Ácido Nucleico
12.
Bioconjug Chem ; 30(7): 1860-1863, 2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-30811178

RESUMO

We report a nanosized DNA capsule with a photoinducible mechanical unlocking system for creation of a carrier for delivery system to the cells. A photocage system was introduced into the nanocapsule (NC) for control of opening of the NC with photoirradiation. The opening of the NC was observed by atomic force microscopy (AFM), and the dynamic opening of the NC was examined by fluorescence recovery from the quenching. The photocaged NC was introduced to the cell without toxicity and observed in the cytoplasm, and the photoinduced opening of the NC was observed in the cell. The selective unlocking and opening of the caged-NC in a single cell was successfully achieved by a laser irradiation to individual cells.


Assuntos
DNA/química , Preparações de Ação Retardada/química , Nanocápsulas/química , Linhagem Celular , Corantes/administração & dosagem , Humanos , Nanotecnologia , Raios Ultravioleta
13.
Chemistry ; 25(6): 1446-1450, 2019 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-30479034

RESUMO

This work demonstrates single-molecule imaging of metal-ion induced double-stranded DNA formation in DNA nanostructures. The formation of the metal ion-mediated base pairing in a DNA origami frame was examined using C-Ag-C and T-Hg-T metallo-base pairs. The target DNA strands containing consecutive C or T were incorporated into the DNA frame, and the binding was controlled by the addition of metal ions. Double-stranded DNA formation was monitored by observing the structural changes in the incorporated DNA strands using high-speed atomic force microscopy (AFM). Using the T-Hg-T base pair, the dynamic formation of unique dsDNA and its dissociation were observed. The formation of an unusual shape of dsDNA with consecutive T-Hg-T base pairs was visualized in the designed nanoscale structure.


Assuntos
DNA/química , Metais/química , Nanoestruturas/química , Pareamento de Bases , DNA/metabolismo , Íons/química , Microscopia de Força Atômica , Nanotecnologia
14.
Chemistry ; 25(20): 5158-5162, 2019 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-30791173

RESUMO

Biological macromolecular machines perform impressive mechanical movements. F-adenosine triphosphate (ATP) synthase uses a proton gradient to generate ATP through mechanical rotations. Here, a programmed hexagonal DNA nanomachine, in which a three-armed DNA nanostructure (TAN) can perform stepwise rotations in the confined nanospace powered by DNA fuels, is demonstrated. The movement of TAN can precisely go through a 60° rotation, which is confirmed by atomic force microscopy, and each stepwise directional rotating is monitored by fluorescent measurements. Moreover, the rotary nanomachine is used to spatially organize cascade enzymes: glucose oxidase (GOx) and horseradish peroxidase (HRP) in four different arrangements. The multistep regulations of the biocatalytic activities are achieved by employing TAN rotations. This work presents a new prototype of rotary nanodevice with both angular and directional control, and provides a nanoscale mechanical engineering platform for the reactive molecular components, demonstrating that DNA-based framework may have significant roles in futuristic nanofactory construction.


Assuntos
DNA/química , Nanoestruturas/química , Trifosfato de Adenosina/química , Glucose Oxidase/química , Peroxidase do Rábano Silvestre/química , Nanotecnologia , Rotação
15.
Angew Chem Int Ed Engl ; 58(23): 7626-7630, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-30908862

RESUMO

Herein, the direct visualization of the dynamic interaction between a photoresponsive transcription factor fusion, GAL4-VVD, and DNA using high-speed atomic force microscopy (HS-AFM) is reported. A series of different GAL4-VVD movements, such as binding, sliding, stalling, and dissociation, was observed. Inter-strand jumping on two double-stranded (ds) DNAs was also observed. Detailed analysis using a long substrate DNA strand containing five GAL4-binding sites revealed that GAL4-VVD randomly moved on the dsDNA using sliding and hopping to rapidly find specific binding sites, and then stalled to the specific sites to form a stable complex formation. These results suggest the existence of different conformations of the protein to enable sliding and stalling. This single-molecule imaging system with nanoscale resolution provides an insight into the searching mechanism used by DNA-binding proteins.


Assuntos
Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Sítios de Ligação , DNA/química , DNA/efeitos da radiação , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/efeitos da radiação , Proteínas Fúngicas/genética , Proteínas Fúngicas/efeitos da radiação , Luz , Microscopia de Força Atômica , Ligação Proteica , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/efeitos da radiação , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/efeitos da radiação , Fatores de Transcrição/genética , Fatores de Transcrição/efeitos da radiação
16.
Nucleic Acids Res ; 44(14): 6574-82, 2016 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-27387283

RESUMO

DNA nanoassemblies have demonstrated wide applications in various fields including nanomaterials, drug delivery and biosensing. In DNA origami, single-stranded DNA template is shaped into desired nanostructure by DNA staples that form Holliday junctions with the template. Limited by current methodologies, however, mechanical properties of DNA origami structures have not been adequately characterized, which hinders further applications of these materials. Using laser tweezers, here, we have described two mechanical properties of DNA nanoassemblies represented by DNA nanotubes, DNA nanopyramids and DNA nanotiles. First, mechanical stability of DNA origami structures is determined by the effective density of Holliday junctions along a particular stress direction. Second, mechanical isomerization observed between two conformations of DNA nanotubes at 10-35 pN has been ascribed to the collective actions of individual Holliday junctions, which are only possible in DNA origami with rotational symmetric arrangements of Holliday junctions, such as those in DNA nanotubes. Our results indicate that Holliday junctions control mechanical behaviors of DNA nanoassemblies. Therefore, they can be considered as 'mechanophores' that sustain mechanical properties of origami nanoassemblies. The mechanical properties observed here provide insights for designing better DNA nanostructures. In addition, the unprecedented mechanical isomerization process brings new strategies for the development of nano-sensors and actuators.


Assuntos
Fenômenos Biofísicos , DNA Cruciforme/química , Nanopartículas/química , Conformação de Ácido Nucleico , Isomerismo , Microscopia de Força Atômica , Nanotubos
17.
Angew Chem Int Ed Engl ; 57(10): 2586-2591, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29341462

RESUMO

In native systems, scaffolding proteins play important roles in assembling proteins into complexes to transduce signals. This concept is yet to be applied to the assembly of functional transmembrane protein complexes in artificial systems. To address this issue, DNA origami has the potential to serve as scaffolds that arrange proteins at specific positions in complexes. Herein, we report that Kir3 K+ channel proteins are assembled through zinc-finger protein (ZFP)-adaptors at specific locations on DNA origami scaffolds. Specific binding of the ZFP-fused Kir3 channels and ZFP-based adaptors on DNA origami were confirmed by atomic force microscopy and gel electrophoresis. Furthermore, the DNA origami with ZFP binding sites nearly tripled the K+ channel current activity elicited by heterotetrameric Kir3 channels in HEK293T cells. Thus, our method provides a useful template to control the oligomerization states of membrane protein complexes in vitro and in living cells.

18.
Chemistry ; 23(16): 3979-3985, 2017 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-28199775

RESUMO

Various DNA-based nanodevices have been developed on the nanometer scale using light as regulation input. However, the programmed controllability is still a major challenge for these artificial nanodevices. Herein, we demonstrate a rotary DNA nanostructure in which the rotations are controlled by light. A bar-shaped DNA rotor, fabricated as a stiff double-crossover molecule, was placed on the top of a rectangular DNA tile. The photoresponsive oligonucleotides modified with azobenzenes were employed as switching motifs to release/trap the rotor at specific angular position on DNA tile by switching photoirradiations between ultraviolet and visible light. As a result, two reconfigurable states (perpendicular and parallel) of rotor were obtained, in which the angular changes were characterized by AFM and fluorescence quenching assays. Moreover, the reversible rotary motions during the photoirradiation were directly visualized on the DNA tile surface in a nanometer-scale precision using a second-scale scanning of the high-speed AFM.


Assuntos
Compostos Azo/química , DNA/química , Nanoestruturas/química , Nanotecnologia/instrumentação , Oligonucleotídeos/química , Rotação , Desenho de Equipamento , Luz , Microscopia de Força Atômica , Nanoestruturas/efeitos da radiação , Nanoestruturas/ultraestrutura , Processos Fotoquímicos
19.
Nucleic Acids Res ; 43(14): 6692-700, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26130712

RESUMO

DNA has recently emerged as a promising material for the construction of nanosized architectures. Chemically modified DNA has been suggested to be an important component of such architectural building blocks. We have designed and synthesized a novel H-shaped DNA oligonucleotide dimer that is cross-linked with a structurally rigid linker composed of phenylene and ethynylene groups. A rotatable DNA unit was constructed through the self-assembly of this H-shaped DNA component and two complementary DNA oligonucleotides. In addition to the rotatable unit, a locked DNA unit containing two H-shaped DNA components was also constructed. As an example of an extended locked structure, a hexagonal DNA origami dimer and oligomer were constructed by using H-shaped DNA as linkers.


Assuntos
DNA/química , Nanoestruturas/química , DNA/síntese química , Modelos Moleculares , Nanoestruturas/ultraestrutura , Nanotecnologia
20.
Angew Chem Int Ed Engl ; 56(48): 15324-15328, 2017 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-29044955

RESUMO

We demonstrate direct observation of the dynamic opening and closing behavior of photocontrollable DNA origami nanoscissors using high-speed atomic force microscopy (HS-AFM). First the conformational change between the open and closed state controlled by adjustment of surrounding salt concentration could be directly observed during AFM scanning. Then light-responsive moieties were incorporated into the nanoscissors to control these structural changes by photoirradiation. Using photoswitchable DNA strands, we created a photoresponsive nanoscissors variant and were able to distinguish between the open and closed conformations after respective irradiation with ultraviolet (UV) and visible (Vis) light by gel electrophoresis and AFM imaging. Additionally, these reversible changes in shape during photoirradiation were directly visualized using HS-AFM. Moreover, four photoswitchable nanoscissors were assembled into a scissor-actuator-like higher-order object, the configuration of which could be controlled by the open and closed switching induced by irradiation with UV and Vis light.


Assuntos
DNA/química , Nanoestruturas/química , Nanotecnologia , Conformação de Ácido Nucleico , Processos Fotoquímicos , Imagem Individual de Molécula , Luz , Microscopia de Força Atômica , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA