Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Clin Radiol ; 71(1): 32-9, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26474946

RESUMO

AIM: To evaluate the relative accuracy of contrast-enhanced time-resolved angiography with interleaved stochastic trajectories versus conventional contrast-enhanced magnetic resonance imaging (MRI) following International Society for the Study of Vascular Anomalies updated 2014-based classification of soft-tissue vascular anomalies in the head and neck in children. MATERIALS AND METHODS: Time-resolved angiography with interleaved stochastic trajectories versus conventional contrast-enhanced MRI of children with diagnosis of soft-tissue vascular anomalies in the head and neck referred for MRI between 2008 and 2014 were retrospectively reviewed. Forty-seven children (0-18 years) were evaluated. Two paediatric neuroradiologists evaluated time-resolved MRA and conventional MRI in two different sessions (30 days apart). Blood-pool endovascular MRI contrast agent gadofosveset trisodium was used. RESULTS: The present cohort had the following diagnoses: infantile haemangioma (n=6), venous malformation (VM; n=23), lymphatic malformation (LM; n=16), arteriovenous malformation (AVM; n=2). Time-resolved MRA alone accurately classified 38/47 (81%) and conventional MRI 42/47 (89%), respectively. Although time-resolved MRA alone is slightly superior to conventional MRI alone for diagnosis of infantile haemangioma, conventional MRI is slightly better for diagnosis of venous and LMs. Neither time-resolved MRA nor conventional MRI was sufficient for accurate diagnosis of AVM in this cohort. Conventional MRI combined with time-resolved MRA accurately classified 44/47 cases (94%). CONCLUSION: Time-resolved MRA using gadofosveset trisodium can accurately classify soft-tissue vascular anomalies in the head and neck in children. The addition of time-resolved MRA to existing conventional MRI protocols provides haemodynamic information, assisting the diagnosis of vascular anomalies in the paediatric population at one-third of the dose of other MRI contrast agents.


Assuntos
Cabeça/irrigação sanguínea , Angiografia por Ressonância Magnética/métodos , Pescoço/irrigação sanguínea , Malformações Vasculares/diagnóstico , Adolescente , Criança , Pré-Escolar , Meios de Contraste , Feminino , Gadolínio , Humanos , Aumento da Imagem/métodos , Lactente , Recém-Nascido , Imageamento por Ressonância Magnética/métodos , Masculino , Compostos Organometálicos
2.
Opt Express ; 23(2): 1377-87, 2015 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-25835896

RESUMO

An array of Ag nanoboxes fabricated by helium-ion lithography is used to demonstrate plasmon-enhanced nonradiative energy transfer in a hybrid quantum well-quantum dot structure. The nonradiative energy transfer, from an InGaN/GaN quantum well to CdSe/ZnS nanocrystal quantum dots embedded in an ~80 nm layer of PMMA, is investigated over a range of carrier densities within the quantum well. The plasmon-enhanced energy transfer efficiency is found to be independent of the carrier density, with an efficiency of 25% reported. The dependence on carrier density is observed to be the same as for conventional nonradiative energy transfer. The plasmon-coupled energy transfer enhances the QD emission by 58%. However, due to photoluminescence quenching effects an overall increase in the QD emission of 16% is observed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA