Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
J Anat ; 240(3): 466-474, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34648184

RESUMO

Body size is a key factor that influences antipredator behavior. For animals that rely on jumping to escape from predators, there is a theoretical trade-off between jump distance and acceleration as body size changes at both the inter- and intraspecific levels. Assuming geometric similarity, acceleration will decrease with increasing body size due to a smaller increase in muscle cross-sectional area than body mass. Smaller animals will likely have a similar jump distance as larger animals due to their shorter limbs and faster accelerations. Therefore, in order to maintain acceleration in a jump across different body sizes, hind limbs must be disproportionately bigger for larger animals. We explored this prediction using four species of kangaroo rats (Dipodomys spp.), a genus of bipedal rodent with similar morphology across a range of body sizes (40-150 g). Kangaroo rat jump performance was measured by simulating snake strikes to free-ranging individuals. Additionally, morphological measurements of hind limb muscles and segment lengths were obtained from thawed frozen specimens. Overall, jump acceleration was constant across body sizes and jump distance increased with increasing size. Additionally, kangaroo rat hind limb muscle mass and cross-sectional area scaled with positive allometry. Ankle extensor tendon cross-sectional area also scaled with positive allometry. Hind limb segment length scaled isometrically, with the exception of the metatarsals, which scaled with negative allometry. Overall, these findings support the hypothesis that kangaroo rat hind limbs are built to maintain jump acceleration rather than jump distance. Selective pressure from single-strike predators, such as snakes and owls, likely drives this relationship.


Assuntos
Dipodomys , Músculo Esquelético , Animais , Articulação do Tornozelo/fisiologia , Dipodomys/fisiologia , Membro Posterior/anatomia & histologia , Locomoção/fisiologia , Músculo Esquelético/anatomia & histologia , Tendões/anatomia & histologia
2.
Proc Biol Sci ; 288(1953): 20210650, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34130507

RESUMO

Among the most specialized integumentary outgrowths in amniotes are the adhesive, scale-like scansors and lamellae on the digits of anoles and geckos. Less well-known are adhesive tail pads exhibited by 21 gecko genera. While described over 120 years ago, no studies have quantified their possible adhesive function or described their embryonic development. Here, we characterize adult and embryonic morphology and adhesive performance of crested gecko (Correlophus ciliatus) tail pads. Additionally, we use embryonic data to test whether tail pads are serial homologues to toe pads. External morphology and histology of C. ciliatus tail pads are largely similar to tail pads of closely related geckos. Functionally, C. ciliatus tail pads exhibit impressive adhesive ability, hypothetically capable of holding up to five times their own mass. Tail pads develop at approximately the same time during embryogenesis as toe pads. Further, tail pads exhibit similar developmental patterns to toe pads, which are markedly different from non-adhesive gecko toes and tails. Our data provide support for the serial homology of adhesive tail pads with toe pads.


Assuntos
Lagartos , Adesividade , Adesivos , Animais , Fenômenos Biomecânicos , Biofísica , Lagartos/anatomia & histologia , Dedos do Pé
3.
J Anat ; 239(6): 1503-1515, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34268765

RESUMO

The remarkable ability of geckos to adhere to smooth surfaces is often thought of in terms of external structures, including the branching setae that make contact with the surface producing van der Waals forces. Some geckos also exhibit unique movements of the distal segments of the limbs during locomotion and static clinging, including active digital hyperextension and considerable pedal rotation. During static clinging, geckos can exhibit considerable adduction/abduction of the pes while the crus and thigh remain firmly adpressed to the substratum. This decoupling of pedal adduction/abduction from ankle flexion/extension and pedal long-axis rotation is a significant departure from pedal displacements of a typical lizard lacking adhesive ability. The structure of the ankle is likely key to this decoupling, although no detailed comparison of this complex joint between pad-bearing geckos and other lizards is available. Here we compare the configuration of the mesotarsal joint of nongekkotan lizards (Iguana and Pristidactylus) with that of the Tokay gecko (Gekko gecko) using prepared skeletons, scanning electron microscopy, and micro-computed tomographic (µCT) scans. We focus on the structure of the astragalocalcaneum and the fourth distal tarsal. The mesotarsal joint exhibits a suite of modifications that are likely associated with the secondarily symmetrical pes of pad-bearing geckos. For example, the lateral process of the astragalocalcaneum is much more extensive in G. gecko compared with other lizards. The mesotarsal joint exhibits several other differences permitting dissociation of long-axis rotation of the pes from flexion-extension movement, including a reduced ventral peg on the fourth distal tarsal, an articulatory pattern dominated by a well-defined, expansive distomesial notch of the astragalocalcaneum, and an associated broad proximodorsal articulatory facet of the fourth distal tarsal. Pad-bearing geckos are capable of effectively deploying their intricate adhesive system across a broad array of body angles because of this highly modified ankle. Future research should determine whether the differences encountered in G. gecko (and their extent) apply to the Gekkota as a whole and should examine how the elements of the ankle move dynamically during locomotion across a range of taxa.


Assuntos
Adesivos , Lagartos , Animais , Tornozelo , Extremidades , Lagartos/anatomia & histologia , Locomoção
4.
J Exp Biol ; 223(Pt 14)2020 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-32561628

RESUMO

Movements of ectotherms are constrained by their body temperature owing to the effects of temperature on muscle physiology. As physical performance often affects the outcome of predator-prey interactions, environmental temperature can influence the ability of ectotherms to capture prey and/or defend themselves against predators. However, previous research on the kinematics of ectotherms suggests that some species may use elastic storage mechanisms when attacking or defending, thereby mitigating the effects of sub-optimal temperature. Rattlesnakes (Crotalus spp.) are a speciose group of ectothermic viperid snakes that rely on crypsis, rattling and striking to deter predators. We examined the influence of body temperature on the behavior and kinematics of two rattlesnake species (Crotalus oreganus helleri and Crotalus scutulatus) when defensively striking towards a threatening stimulus. We recorded defensive strikes at body temperatures ranging from 15-35°C. We found that strike speed and speed of mouth gaping during the strike were positively correlated with temperature. We also found a marginal effect of temperature on the probability of striking, latency to strike and strike outcome. Overall, warmer snakes are more likely to strike, strike faster, open their mouth faster and reach maximum gape earlier than colder snakes. However, the effects of temperature were less than would be expected for purely muscle-driven movements. Our results suggest that, although rattlesnakes are at a greater risk of predation at colder body temperatures, their decrease in strike performance may be mitigated to some extent by employing mechanisms in addition to skeletal muscle contraction (e.g. elastic energy storage) to power strikes.


Assuntos
Temperatura Corporal , Crotalus , Comportamento Predatório , Animais , Temperatura Baixa , Temperatura
5.
Mol Phylogenet Evol ; 133: 54-66, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30590108

RESUMO

Amazonia harbors the greatest biological diversity on Earth. One trend that spans Amazonian taxa is that most taxonomic groups either exhibit broad geographic ranges or small restricted ranges. This is likely because many traits that determine a species range size, such as dispersal ability or body size, are autocorrelated. As such, it is rare to find groups that exhibit both large and small ranges. Once identified, however, these groups provide a powerful system for isolating specific traits that influence species distributions. One group of terrestrial vertebrates, gecko lizards, tends to exhibit small geographic ranges. Despite one exception, this applies to the Neotropical dwarf geckos of the genus Gonatodes. This exception, Gonatodes humeralis, has a geographic distribution almost 1,000,000 km2 larger than the combined ranges of its 30 congeners. As the smallest member of its genus and a gecko lizard more generally, G. humeralis is an unlikely candidate to be a wide-ranged Amazonian taxon. To test whether or not G. humeralis is one or more species, we generated molecular genetic data using restriction-site associated sequencing (RADseq) and traditional Sanger methods for samples from across its range and conducted a phylogeographic study. We conclude that G. humeralis is, in fact, a single species across its contiguous range in South America. Thus, Gonatodes is a unique clade among Neotropical taxa, containing both wide-ranged and range-restricted taxa, which provides empiricists with a powerful model system to correlate complex species traits and distributions. Additionally, we provide evidence to support species-level divergence of the allopatric population from Trinidad and we resurrect the name Gonatodes ferrugineus from synonymy for this population.


Assuntos
Lagartos/classificação , Animais , Genética Populacional , Lagartos/genética , Filogenia , Filogeografia , América do Sul
6.
Philos Trans A Math Phys Eng Sci ; 377(2138): 20180265, 2019 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-30967061

RESUMO

The surfaces of animals, plants and abiotic structures are not only important for organismal survival, but they have also inspired countless biomimetic and industrial applications. Additionally, the surfaces of animals and plants exhibit an unprecedented level of diversity, and animals often move on the surface of plants. Replicating these surfaces offers a number of advantages, such as preserving a surface that is likely to degrade over time, controlling for non-structural aspects of surfaces, such as compliance and chemistry, and being able to produce large areas of a small surface. In this paper, we compare three replication techniques among a number of species of plants, a technical surface and a rock. We then use two model parameters (cross-covariance function ratio and relative topography difference) to develop a unique method for quantitatively evaluating the quality of the replication. Finally, we outline future directions that can employ highly accurate surface replications, including ecological and evolutionary studies, biomechanical experiments, industrial applications and improving haptic properties of bioinspired surfaces. The recent advances associated with surface replication and imaging technology have formed a foundation on which to incorporate surface information into biological sciences and to improve industrial and biomimetic applications. This article is part of the theme issue 'Bioinspired materials and surfaces for green science and technology'.


Assuntos
Evolução Biológica , Biomimética/métodos , Ecologia/métodos , Animais , Plantas , Propriedades de Superfície
7.
J Exp Biol ; 221(Pt 18)2018 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-30026242

RESUMO

Animal locomotion is driven by underlying axial and appendicular musculature. In order for locomotion to be effective, these muscles must be able to rapidly respond to changes in environmental and physiological demands. Although virtually unstudied, muscles must also respond to morphological changes, such as those that occur with tail autotomy in lizards. Tail autotomy in leopard geckos (Eublepharis macularius) results in a 25% loss of caudal mass and significant kinematic alterations to maintain stability. To elucidate how motor control of the locomotor muscles is modulated with these shifts, we used electromyography (EMG) to quantify patterns of in vivo muscle activity in forelimb and hindlimb muscles before and after autotomy. Forelimb muscles (biceps brachii and triceps brachii) exhibited no changes in motor recruitment, consistent with unaltered kinematics after autotomy. The amplitude of activity of propulsive muscles of the hindlimbs (caudofemoralis and gastrocnemius) was significantly reduced and coincided with decreases in the propulsive phases of femur retraction and ankle extension, respectively. The puboischiotibialis did not exhibit these changes, despite significant reductions in femur depression and knee angle, suggesting that the reduction in mass and vertical ground-reaction force by autotomy allows for the maintenance of a more sprawled and stable posture without increasing motor recruitment of the support muscles. These results highlight the significant neuromuscular shifts that occur to accommodate dramatic changes in body size and mass distribution, and illuminate the utility of tail autotomy as a system for studying the neuromuscular control of locomotion.


Assuntos
Peso Corporal , Lagartos/fisiologia , Locomoção/fisiologia , Músculo Esquelético/fisiologia , Postura/fisiologia , Cauda/fisiologia , Animais , Fenômenos Biomecânicos , Eletromiografia , Membro Anterior/fisiologia , Membro Posterior/fisiologia , Lagartos/cirurgia , Cauda/cirurgia
8.
J Exp Biol ; 221(Pt 19)2018 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-30301821

RESUMO

Fishing is a popular and lucrative sport around the world and, in some cases, may contribute to declining fish stocks. To mediate this problem and maintain fish biomass in aquatic ecosystems, catch-and-release fishing, whereby a fish is caught and immediately released, has been implemented in many countries. It is unclear whether the injuries to the mouth that are caused by the hook have an impact on feeding performance of fishes. Using high-speed video and computational fluid dynamics (CFD), we asked whether injuries around the mouth caused by fishing hooks have a negative impact on suction feeding performance (measured as maximum prey velocity) of the commonly angled marine shiner perch (Cymatogaster aggregata). We hypothesized that fish with mouth injuries would exhibit decreased feeding performance compared with controls. Ten shiner perch were caught using scientific angling and 10 were caught using a seine net. Feeding events were then recorded at 500 frames per second using a high-speed camera. Compared with the control group, maximum prey velocity was significantly lower in the injured group (P<0.01). Maximum gape, time to peak gape, maximum jaw protrusion and predator-prey distance were comparable between the control and injured groups, leading us to conclude that the injury-induced hole in the buccal cavity wall reduced the pressure gradient during mouth expansion, thereby reducing the velocity of water entering the fish's mouth. This was confirmed with our CFD modelling. Fishing injuries in nature are likely to depress feeding performance of fish after they have been released, although it is currently unclear whether this has a significant impact on survival.


Assuntos
Comportamento Alimentar , Pesqueiros , Perciformes/lesões , Perciformes/fisiologia , Animais , Biologia Computacional , Conservação dos Recursos Naturais , Hidrodinâmica , Gravação em Vídeo
9.
Biol Lett ; 14(5)2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29794005

RESUMO

Geckos feature a large range of eye sizes, but what drives this phenotypic diversity is currently unknown. Earlier studies point towards diel activity patterns (DAPs) and locomotory mode, but phylogenetic comparative studies in support of the proposed adaptive mode of eye evolution are lacking. Here, we test the hypothesis of DAPs as the driver of eye size evolution with a dataset on 99 species of gecko. Results from phylogenetic generalized least-square analysis (PGLS) and multivariate model-fitting reveal smaller eyes in diurnal geckos consistent with different phenotypic optima. However, Bayesian analyses of selective regime shifts demonstrate that only two of nine transitions from nocturnal to diurnal activity are coupled with decreases in eye size, and two other regime shifts are not associated with DAP transitions. This non-uniform evolutionary response suggests that eye size is not the only functionally relevant variable. Evolutionary adaptations may therefore include different combinations of several traits (e.g. photoreceptors), all with the same functional outcome. Our results further demonstrate that DAP only partially explains eye size diversity in geckos. As open habitats favour the evolution of large eyes while obstructed habitats favour small eyes, the degree of habitat clutter emerges as another potential axis of eye diversification.


Assuntos
Evolução Biológica , Olho/anatomia & histologia , Lagartos/anatomia & histologia , Lagartos/fisiologia , Adaptação Biológica , Animais , Tamanho Corporal , Ritmo Circadiano , Ecossistema , Filogenia
10.
J Hered ; 109(4): 462-468, 2018 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-29294045

RESUMO

Sex-specific genetic markers identified using restriction site-associated DNA sequencing, or RADseq, permits the recognition of a species' sex chromosome system in cases where standard cytogenetic methods fail. Thus, species with male-specific RAD markers have an XX/XY sex chromosome system (male heterogamety) while species with female-specific RAD markers have a ZZ/ZW sex chromosome (female heterogamety). Here, we use RADseq data from 5 male and 5 female South American dwarf geckos (Gonatodes humeralis) to identify an XX/XY sex chromosome system. This is the first confidently known sex chromosome system in a Gonatodes species. We used a low-coverage de novo G. humeralis genome assembly to design PCR primers to validate the male-specificity of a subset of the sex-specific RADseq markers and describe how even modest genome assemblies can facilitate the design of sex-specific PCR primers in species with diverse sex chromosome systems.


Assuntos
Genoma/genética , Lagartos/genética , Cromossomos Sexuais/genética , Animais , Feminino , Marcadores Genéticos/genética , Genômica , Masculino , Fatores Sexuais
11.
Proc Natl Acad Sci U S A ; 112(3): 809-14, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25548182

RESUMO

Innovations permit the diversification of lineages, but they may also impose functional constraints on behaviors such as locomotion. Thus, it is not surprising that secondary simplification of novel locomotory traits has occurred several times among vertebrates and could potentially lead to exceptional divergence when constraints are relaxed. For example, the gecko adhesive system is a remarkable innovation that permits locomotion on surfaces unavailable to other animals, but has been lost or simplified in species that have reverted to a terrestrial lifestyle. We examined the functional and morphological consequences of this adaptive simplification in the Pachydactylus radiation of geckos, which exhibits multiple unambiguous losses or bouts of simplification of the adhesive system. We found that the rates of morphological and 3D locomotor kinematic evolution are elevated in those species that have simplified or lost adhesive capabilities. This finding suggests that the constraints associated with adhesion have been circumvented, permitting these species to either run faster or burrow. The association between a terrestrial lifestyle and the loss/reduction of adhesion suggests a direct link between morphology, biomechanics, and ecology.


Assuntos
Adaptação Fisiológica , Lagartos/fisiologia , Locomoção , Animais , Fenômenos Biomecânicos
12.
J Exp Biol ; 220(Pt 5): 796-806, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-27980123

RESUMO

A central question in biology is how animals successfully behave under complex natural conditions. Although changes in locomotor behaviour, motor control and force production in relation to incline are commonly examined, a wide range of other factors, including a range of perch diameters, pervades arboreal habitats. Moving on different substrate diameters requires considerable alteration of body and limb posture, probably causing significant shifts in the lengths of the muscle-tendon units powering locomotion. Thus, how substrate shape impacts in vivo muscle function remains an important but neglected question in ecophysiology. Here, we used high-speed videography, electromyography, in situ contractile experiments and morphology to examine gastrocnemius muscle function during arboreal locomotion in the Cuban knight anole, Anolis equestris The gastrocnemius contributes more to the propulsive effort on broad surfaces than on narrow surfaces. Surprisingly, substrate inclination affected the relationship between the maximum potential force and fibre recruitment; the trade-off that was present between these variables on horizontal surfaces became a positive relationship on inclined surfaces. Finally, the biarticular nature of the gastrocnemius allows it to generate force isometrically, regardless of substrate diameter and incline, despite the fact that the tendons are incapable of stretching during cyclical locomotion. Our results emphasize the importance of considering ecology and muscle function together, and the necessity of examining both mechanical and physiological properties of muscles to understand how animals move in their environment.


Assuntos
Membro Posterior/fisiologia , Iguanas/fisiologia , Animais , Fenômenos Biomecânicos , Eletromiografia , Locomoção , Masculino , Contração Muscular , Músculo Esquelético/fisiologia , Tendões/fisiologia
13.
Proc Biol Sci ; 283(1838)2016 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-27629033

RESUMO

Speciation is a multifaceted process that involves numerous aspects of the biological sciences and occurs for multiple reasons. Ecology plays a major role, including both abiotic and biotic factors. Whether populations experience similar or divergent ecological environments, they often adapt to local conditions through divergence in biomechanical traits. We investigate the role of biomechanics in speciation using fish predator-prey interactions, a primary driver of fitness for both predators and prey. We highlight specific groups of fishes, or specific species, that have been particularly valuable for understanding these dynamic interactions and offer the best opportunities for future studies that link genetic architecture to biomechanics and reproductive isolation (RI). In addition to emphasizing the key biomechanical techniques that will be instrumental, we also propose that the movement towards linking biomechanics and speciation will include (i) establishing the genetic basis of biomechanical traits, (ii) testing whether similar and divergent selection lead to biomechanical divergence, and (iii) testing whether/how biomechanical traits affect RI. Future investigations that examine speciation through the lens of biomechanics will propel our understanding of this key process.


Assuntos
Peixes , Especiação Genética , Locomoção , Comportamento Predatório , Isolamento Reprodutivo , Animais , Ecologia , Fenótipo
14.
Front Zool ; 13: 11, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26941828

RESUMO

BACKGROUND: Terrestrial animals regularly move up and down surfaces in their natural habitat, and the impacts of moving uphill on locomotion are commonly examined. However, if an animal goes up, it must go down. Many morphological features enhance locomotion on inclined surfaces, including adhesive systems among geckos. Despite this, it is not known whether the employment of the adhesive system results in altered locomotor kinematics due to the stereotyped motions that are necessary to engage and disengage the system. Using a generalist pad-bearing gecko, Chondrodactylus bibronii, we determined whether changes in slope impact body and limb kinematics. RESULTS: Despite the change in demand, geckos did not change speed on any incline. This constant speed was achieved by adjusting stride frequency, step length and swing time. Hind limb, but not forelimb, kinematics were altered on steep downhill conditions, thus resulting in significant de-coupling of the limbs. CONCLUSIONS: Unlike other animals on non-level conditions, the geckos in our study only minimally alter the movements of distal limb elements, which is likely due to the constraints associated with the need for rapid attachment and detachment of the adhesive system. This suggests that geckos may experience a trade-off between successful adhesion and the ability to respond dynamically to locomotor perturbations.

15.
J Exp Biol ; 219(Pt 16): 2416-22, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27535984

RESUMO

Autotomy has evolved in many animal lineages as a means of predator escape, and involves the voluntary shedding of body parts. In vertebrates, caudal autotomy (or tail shedding) is the most common form, and it is particularly widespread in lizards. Here, we develop a framework for thinking about how tail loss can have fitness consequences, particularly through its impacts on locomotion. Caudal autotomy is fundamentally an alteration of morphology that affects an animal's mass and mass distribution. These morphological changes affect balance and stability, along with the performance of a range of locomotor activities, from running and climbing to jumping and swimming. These locomotor effects can impact on activities critical for survival and reproduction, including escaping predators, capturing prey and acquiring mates. In this Commentary, we first review work illustrating the (mostly) negative effects of tail loss on locomotor performance, and highlight what these consequences reveal about tail function during locomotion. We also identify important areas of future study, including the exploration of new behaviors (e.g. prey capture), increased use of biomechanical measurements and the incorporation of more field-based studies to continue to build our understanding of the tail, an ancestral and nearly ubiquitous feature of the vertebrate body plan.


Assuntos
Locomoção/fisiologia , Cauda/anatomia & histologia , Cauda/fisiologia , Animais , Comportamento Animal , Lagartos/anatomia & histologia , Lagartos/fisiologia
16.
J Exp Biol ; 219(Pt 22): 3649-3655, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27852765

RESUMO

Locomotion through complex habitats relies on the continuous feedback from a number of sensory systems, including vision. Animals face a visual trade-off between acuity and light sensitivity that depends on light levels, which will dramatically impact the ability to process information and move quickly through a habitat, making ambient illumination an incredibly important ecological factor. Despite this, there is a paucity of data examining ambient light in the context of locomotor dynamics. There have been several independent transitions from the nocturnal ancestor to a diurnal activity pattern among geckos. We examined how ambient light level impacted the locomotor performance and high-speed three-dimensional kinematics of a secondarily diurnal, and cursorial, gecko (Rhoptropus afer) from Namibia. This species is active under foggy and sunny conditions, indicating that a range of ambient light conditions is experienced naturally. Locomotor speed was lowest in the 'no-light' condition compared with all other light intensities, occurring via a combination of shorter stride length and lower stride frequency. Additionally, the centre of mass was significantly lower, and the geckos were more sprawled, in the no-light condition relative to all of the higher light intensities. Locomotor behaviour is clearly sub-optimal under lower light conditions, suggesting that ecological conditions, such as very dense fog, might preclude the ability to run quickly during predator-prey interactions. The impact of ambient light on fitness should be explored further, especially in those groups that exhibit multiple transitions between diel activity patterns.


Assuntos
Ritmo Circadiano/efeitos da radiação , Luz , Lagartos/fisiologia , Locomoção/efeitos da radiação , Animais , Fenômenos Biomecânicos/efeitos da radiação , Peso Corporal , Membro Anterior/fisiologia , Membro Posterior/fisiologia , Análise de Regressão , Análise Espaço-Temporal
17.
J Theor Biol ; 372: 159-67, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25769945

RESUMO

To expand the buccal cavity, many suction-feeding fishes rely on a considerable contribution from dorsal rotation of the dorsal part of the head including the brains, eyes, and several bones forming the braincase and skull roof (jointly referred to as the neurocranium). As the neurocranium takes up a large part of the total mass of the head, this rotation may incur a considerable inertial cost. If so, this would suggest a significant selective pressure on the kinematics and mass distribution of the neurocranium of suction feeders. Here, an inverse dynamic model is formulated to calculate the instantaneous power required to rotate the neurocranium, approximated by a quarter ellipsoid volume of homogeneous density, as well as to calculate the instantaneous suction power based on intra-oral pressure and head volume quantifications. We applied this model to largemouth bass (Micropterus salmoides) and found that the power required to rotate the neurocranium accounts for only about 4% of the power required to suck water into the mouth. Furthermore, recovery of kinetic energy from the rotating neurocranium converted into suction work may be possible during the phase of neurocranial deceleration. Thus, we suggest that only a negligible proportion of the power output of the feeding muscles is lost as inertial costs in the largemouth bass. Consequently, the feeding performance of piscivorous suction feeders with generalised morphology, comparable to our model species, is not limited by neurocranial motion during head expansion. This suggests that it is thus not likely to be a factor of importance in the evolution of cranial shape and size.


Assuntos
Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Comportamento Alimentar/fisiologia , Crânio/anatomia & histologia , Crânio/fisiologia , Animais , Bass , Fenômenos Biomecânicos , Hidrodinâmica , Modelos Biológicos , Boca/fisiologia , Movimento , Comportamento Predatório/fisiologia , Pressão , Rotação , Sucção
18.
Proc Biol Sci ; 281(1782): 20133331, 2014 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-24621949

RESUMO

Successful locomotion through complex, heterogeneous environments requires the muscles that power locomotion to function effectively under a wide variety of conditions. Although considerable data exist on how animals modulate both kinematics and motor pattern when confronted with orientation (i.e. incline) demands, little is known about the modulation of muscle function in response to changes in structural demands like substrate diameter, compliance and texture. Here, we used high-speed videography and electromyography to examine how substrate incline and perch diameter affected the kinematics and muscle function of both the forelimb and hindlimb in the green anole (Anolis carolinensis). Surprisingly, we found a decoupling of the modulation of kinematics and motor activity, with kinematics being more affected by perch diameter than by incline, and muscle function being more affected by incline than by perch diameter. Also, muscle activity was most stereotyped on the broad, vertical condition, suggesting that, despite being classified as a trunk-crown ecomorph, this species may prefer trunks. These data emphasize the complex interactions between the processes that underlie animal movement and the importance of examining muscle function when considering both the evolution of locomotion and the impacts of ecology on function.


Assuntos
Membro Anterior/fisiologia , Membro Posterior/fisiologia , Lagartos/fisiologia , Locomoção , Animais , Fenômenos Biomecânicos , Eletromiografia , Meio Ambiente , Músculo Esquelético/fisiologia , Gravação em Vídeo
19.
J Exp Biol ; 217(Pt 21): 3891-7, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25267844

RESUMO

Animals can undergo significant weight change for a variety of reasons. Autotomy, the voluntary shedding of an appendage in response to a predator stimulus, provides an effective model for measuring the effects of rapid weight change on locomotor behavior and the responses to more gradual weight gain, particularly in lizards capable of both autotomizing and regenerating their tail. Although the general effects of autotomy on locomotor performance are commonly explored, we investigated changes in locomotor mechanics associated with tail loss and long-term regeneration for the first time by measuring morphology, 3D kinematics and ground reaction forces (GRFs) in the leopard gecko Eublepharis macularius. Tail autotomy resulted in a 13% anterior shift in the center of mass (CoM), which only partially recovered after full regeneration of the tail. Although no changes in body or forelimb kinematics were evident, decreases in hindlimb joint angles signify a more sprawled posture following autotomy. Changes in hindlimb GRFs resulted in an increase in weight-specific propulsive force, without a corresponding change in locomotor speed. Hindlimb kinematics and GRFs following autotomy recovered to pre-autotomy values as the tail regenerated. These results suggest an active locomotor response to tail loss that demonstrates the causal relationships between variations in morphology, kinematics and force.


Assuntos
Lagartos/fisiologia , Locomoção/fisiologia , Postura/fisiologia , Regeneração/fisiologia , Cauda/fisiologia , Análise de Variância , Animais , Fenômenos Biomecânicos , Peso Corporal , Imageamento Tridimensional , Cauda/anatomia & histologia
20.
Biol Lett ; 10(12): 20140701, 2014 12.
Artigo em Inglês | MEDLINE | ID: mdl-25472940

RESUMO

Many geckos use adhesive toe pads on the bottom of their digits to attach to surfaces with remarkable strength. Although gecko adhesion has been studied for hundreds of years, gaps exist in our understanding at the whole-animal level. It remains unclear whether the strength and maintenance of adhesion are determined by the animal or are passively intrinsic to the system. Here we show, for the first time, that strong adhesion is produced passively at the whole-animal level. Experiments on both live and recently euthanized tokay geckos (Gekko gecko) revealed that death does not affect the dynamic adhesive force or motion of a gecko foot when pulled along a vertical surface. Using a novel device that applied repeatable and steady-increasing pulling forces to the foot in shear, we found that the adhesive force was similarly high and variable when the animal was alive (mean ± s.d. = 5.4 ± 1.7 N) and within 30 min after death (5.4 ± 2.1 N). However, kinematic analyses showed that live geckos are able to control the degree of toe pad engagement and can rapidly stop strong adhesion by hyperextending the toes. This study offers the first assessment of whole-animal adhesive force under extremely controlled conditions. Our findings reveal that dead geckos maintain the ability to adhere with the same force as living animals, disproving that strong adhesion requires active control.


Assuntos
Morte , Lagartos/fisiologia , Adesivos Teciduais , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA