Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(44): e2209601119, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36279470

RESUMO

The importance of oscillations and deterministic chaos in natural biological systems has been discussed for several decades and was originally based on discrete-time population growth models (May 1974). Recently, all types of nonlinear dynamics were shown for experimental communities where several species interact. Yet, there are no data exhibiting the whole range of nonlinear dynamics for single-species systems without trophic interactions. Up until now, ecological experiments and models ignored the intracellular dimension, which includes multiple nonlinear processes even within one cell type. Here, we show that dynamics of single-species systems of protists in continuous experimental chemostat systems and corresponding continuous-time models reveal typical characteristics of nonlinear dynamics and even deterministic chaos, a very rare discovery. An automatic cell registration enabled a continuous and undisturbed analysis of dynamic behavior with a high temporal resolution. Our simple and general model considering the cell cycle exhibits a remarkable spectrum of dynamic behavior. Chaos-like dynamics were shown in continuous single-species populations in experimental and modeling data on the level of a single type of cells without any external forcing. This study demonstrates how complex processes occurring in single cells influence dynamics on the population level. Nonlinearity should be considered as an important phenomenon in cell biology and single-species dynamics and also, for the maintenance of high biodiversity in nature, a prerequisite for nature conservation.


Assuntos
Eucariotos , Dinâmica não Linear , Humanos , Modelos Biológicos , Dinâmica Populacional
2.
J Math Biol ; 87(2): 38, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37537411

RESUMO

We explore the spatial spread of vector-borne infections with conditional vector preferences, meaning that vectors do not visit hosts at random. Vectors may be differentially attracted toward infected and uninfected hosts depending on whether they carry the pathogen or not. The model is expressed as a system of partial differential equations with vector diffusion. We first study the non-spatial model. We show that conditional vector preferences alone (in the absence of any epidemiological feedback on their population dynamics) may result in bistability between the disease-free equilibrium and an endemic equilibrium. A backward bifurcation may allow the disease to persist even though its basic reproductive number is less than one. Bistability can occur only if both infected and uninfected vectors prefer uninfected hosts. Back to the model with diffusion, we show that bistability in the local dynamics may generate travelling waves with either positive or negative spreading speeds, meaning that the disease either invades or retreats into space. In the monostable case, we show that the disease spreading speed depends on the preference of uninfected vectors for infected hosts, but also on the preference of infected vectors for uninfected hosts under some circumstances (when the spreading speed is not linearly determined). We discuss the implications of our results for vector-borne plant diseases, which are the main source of evidence for conditional vector preferences so far.


Assuntos
Doenças Transmissíveis , Doenças Transmitidas por Vetores , Humanos , Doenças Transmissíveis/epidemiologia , Número Básico de Reprodução
3.
J Math Biol ; 87(4): 60, 2023 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-37733146

RESUMO

Many populations occupy spatially fragmented landscapes. How dispersal affects the asymptotic total population size is a key question for conservation management and the design of ecological corridors. Here, we provide a comprehensive overview of two-patch models with symmetric dispersal and two standard density-dependent population growth functions, one in discrete and one in continuous time. A complete analysis of the discrete-time model reveals four response scenarios of the asymptotic total population size to increasing dispersal rate: (1) monotonically beneficial, (2) unimodally beneficial, (3) beneficial turning detrimental, and (4) monotonically detrimental. The same response scenarios exist for the continuous-time model, and we show that the parameter conditions are analogous between the discrete- and continuous-time setting. A detailed biological interpretation offers insight into the mechanisms underlying the response scenarios that thus improve our general understanding how potential conservation efforts affect population size.


Assuntos
Crescimento Demográfico , Densidade Demográfica
4.
PLoS Biol ; 17(12): e3000551, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31794547

RESUMO

If pathogen species, strains, or clones do not interact, intuition suggests the proportion of coinfected hosts should be the product of the individual prevalences. Independence consequently underpins the wide range of methods for detecting pathogen interactions from cross-sectional survey data. However, the very simplest of epidemiological models challenge the underlying assumption of statistical independence. Even if pathogens do not interact, death of coinfected hosts causes net prevalences of individual pathogens to decrease simultaneously. The induced positive correlation between prevalences means the proportion of coinfected hosts is expected to be higher than multiplication would suggest. By modelling the dynamics of multiple noninteracting pathogens causing chronic infections, we develop a pair of novel tests of interaction that properly account for nonindependence between pathogens causing lifelong infection. Our tests allow us to reinterpret data from previous studies including pathogens of humans, plants, and animals. Our work demonstrates how methods to identify interactions between pathogens can be updated using simple epidemic models.


Assuntos
Coinfecção/epidemiologia , Interações Hospedeiro-Patógeno/fisiologia , Infecções/epidemiologia , Animais , Estudos Transversais , Epidemias/estatística & dados numéricos , Humanos , Modelos Biológicos , Prevalência
5.
J Theor Biol ; 509: 110491, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-32949591

RESUMO

Social-ecological models are often used to investigate the mutual interactions between an ecological system and human behaviour at a collective level. The social system is widely represented either by the replicator dynamics or by the best-response dynamics. We investigate the consequences of choosing one or the other with the example of a social-ecological model for eutrophication in shallow lakes, where the anthropogenic discharge of pollutants into the water is determined by a behavioural model using the replicator or a best-response dynamics. We discuss a fundamental difference between the replicator dynamics and the logit formulation of the best-response dynamics. This fundamental difference results in a different number of equilibria. We show that the replicator equation is a limit case of the best-response model, when agents are assumed to behave with infinite rationality. If agents act less rationally in the model using the best-response dynamics, the correspondence with the model using the replicator dynamics decreases. Finally, we show that sustained oscillations observed in both cases may differ substantially. The replicator dynamics makes the amplitude of the limit cycle become larger and makes the system come closer to full cooperation or full defection. Thus, the dynamics along the limit cycle imply a different risk for the system to be pushed by a perturbation into a desirable or an undesirable outcome depending on the socioeconomic dynamics assumed in the model. When analyzing social-ecological models, the choice of a socioeconomic dynamics is often little justified but our results show that it may have dramatic impacts on the coupled human-environment system.


Assuntos
Eutrofização , Lagos , Ecossistema , Humanos , Modelos Teóricos
6.
Bull Math Biol ; 83(10): 107, 2021 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-34482488

RESUMO

As many ecosystems worldwide are in peril, efforts to manage them sustainably require scientific advice. While numerous researchers around the world use a great variety of models to understand ecological dynamics and their responses to disturbances, only a small fraction of these models are ever used to inform ecosystem management. There seems to be a perception that ecological models are not useful for management, even though mathematical models are indispensable in many other fields. We were curious about this mismatch, its roots, and potential ways to overcome it. We searched the literature on recommendations and best practices for how to make ecological models useful to the management of ecosystems and we searched for 'success stories' from the past. We selected and examined several cases where models were instrumental in ecosystem management. We documented their success and asked whether and to what extent they followed recommended best practices. We found that there is not a unique way to conduct a research project that is useful in management decisions. While research is more likely to have impact when conducted with many stakeholders involved and specific to a situation for which data are available, there are great examples of small groups or individuals conducting highly influential research even in the absence of detailed data. We put the question of modelling for ecosystem management into a socio-economic and national context and give our perspectives on how the discipline could move forward.


Assuntos
Ecossistema , Conceitos Matemáticos , Humanos , Modelos Teóricos
7.
Bull Math Biol ; 82(6): 82, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32542422

RESUMO

We present a discrete-time model of a spatially structured population and explore the effects of coupling when the local dynamics contain a strong Allee effect and overcompensation. While an isolated population can exhibit only bistability and essential extinction, a spatially structured population can exhibit numerous coexisting attractors. We identify mechanisms and parameter ranges that can protect the spatially structured population from essential extinction, whereas it is inevitable in the local system. In the case of weak coupling, a state where one subpopulation density lies above and the other one below the Allee threshold can prevent essential extinction. Strong coupling, on the other hand, enables both populations to persist above the Allee threshold when dynamics are (approximately) out of phase. In both cases, attractors have fractal basin boundaries. Outside of these parameter ranges, dispersal was not found to prevent essential extinction. We also demonstrate how spatial structure can lead to long transients of persistence before the population goes extinct.


Assuntos
Modelos Biológicos , Dinâmica Populacional/estatística & dados numéricos , Animais , Biologia Computacional , Ecossistema , Extinção Biológica , Fractais , Conceitos Matemáticos , Dinâmica não Linear , Densidade Demográfica
8.
Theor Popul Biol ; 130: 191-202, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31445973

RESUMO

Predator interference is a form of competition between predator individuals over access to their prey. There is broad empirical evidence for interference to exist in different strengths in various types of ecological communities. At the same time, parasites are increasingly recognized to alter food web structure and dynamics. In order to investigate the eco-epidemiological interplay between interference and infection, we develop and analyze mathematical models of a predator-prey system, where the predators are subject to both interference and infectious disease. In the absence of infection, equilibrium predator density is known to show a non-monotonic response to interference by first increasing and then decreasing with increasing interference levels. We show that predator infection can change this pattern into a monotonically decreasing predator response to interference, provided the transmissibility is large enough and the pathogenicity is moderate such that the impact of disease on host population density prevails over interference effects. This holds for both types of disease transmission studied here, density-dependent and frequency-dependent. For density-dependent transmission, we find that intermediate values of interference can facilitate disease persistence, whereas the disease would disappear for small or large interference levels. By contrast, for frequency-dependent transmission, disease emergence is independent of interference levels. These dynamic interactions may be important for the understanding of potential biocontrol measures and of spread patterns of zoonotic diseases.


Assuntos
Ecossistema , Infecções/transmissão , Comportamento Predatório , Animais , Cadeia Alimentar , Interações Hospedeiro-Parasita , Modelos Teóricos , Densidade Demográfica
9.
Theor Popul Biol ; 130: 1-12, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31580866

RESUMO

Fluctuations in population size may have negative consequences (e.g., an increased risk of extinction or the occurrence of repeated outbreaks), and many management strategies are aimed at avoiding them by either only restocking or only harvesting the population. Two of these strategies are adaptive limiter control (ALC) and adaptive threshold harvesting (ATH). With ALC the population is controlled by only restocking and with ATH by only harvesting. We propose the strategy of combined adaptive limiter control (CALC) as the combination of ALC and ATH and study the potential advantages of CALC over ALC and ATH. We consider two different population models, namely a stochastic overcompensatory model and a host-pathogen-predator model. For the first model, our results show that the combination of restocking and harvesting under CALC improves the constancy stability of the managed populations when the harvesting and restocking intensities are high enough. Otherwise the effect is marginal or in rare cases negative. For the second model, we show that combining harvesting with restocking reduces the outbreak risk only if the harvesting intensity is low. For medium harvesting intensities the effect is marginal and for high harvesting intensities the risk of outbreaks is increased. In addition, we study the optimal harvesting-restocking balance by considering a proxy of the benefit obtained in terms of the reduction in the outbreak risk and the harvesting and restocking costs.


Assuntos
Dinâmica Populacional , Animais , Modelos Biológicos , Densidade Demográfica , Processos Estocásticos
10.
Bull Math Biol ; 81(4): 995-1030, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30547276

RESUMO

Preytaxis is the attraction (or repulsion) of predators along prey density gradients and a potentially important mechanism for predator movement. However, the impact preytaxis has on the spatial spread of a predator invasion or of an epidemic within the prey has not been investigated. We investigate the effects preytaxis has on the wavespeed of several different invasion scenarios in an eco-epidemiological system. In general, preytaxis cannot slow down predator or disease invasions and there are scenarios where preytaxis speeds up predator or disease invasions. For example, in the absence of disease, attractive preytaxis results in an increased wavespeed of predators invading prey, whereas repulsive preytaxis has no effect on the wavespeed, but the wavefront is shallower. On top of this, repulsive preytaxis can induce spatiotemporal oscillations and/or chaos behind the invasion front, phenomena normally only seen when the (non-spatial) coexistence steady state is unstable. In the presence of disease, the predator wave can have a different response to attractive susceptible and attractive infected prey. In particular, we found a case where attractive infected prey increases the predators' wavespeed by a disproportionately large amount compared to attractive susceptible prey since a predator invasion has a larger impact on the infected population. When we consider a disease invading a predator-prey steady state, we found some counter-intuitive results. For example, the epidemic has an increased wavespeed when infected prey attract predators. Likewise, repulsive susceptible prey can also increase the infection wave's wavespeed. These results suggest that preytaxis can have a major effect on the interactions of predators, prey and diseases.


Assuntos
Modelos Biológicos , Comportamento Predatório , Doenças dos Animais/epidemiologia , Migração Animal , Animais , Ecossistema , Cadeia Alimentar , Conceitos Matemáticos , Dinâmica Populacional , Análise Espaço-Temporal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA