Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 144(21): 9363-9371, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35588530

RESUMO

Nearly every animal species on Earth contains a unique polyketide synthase (PKS) encoded in its genome, yet no animal-clade PKS has been biochemically characterized, and even the chemical products of these ubiquitous enzymes are known in only a few cases. The earliest animal genome-encoded PKS gene to be identified was SpPks1 from sea urchins. Previous genetic knockdown experiments implicated SpPks1 in synthesis of the sea urchin pigment echinochrome. Here, we express and purify SpPks1, performing biochemical experiments to demonstrate that the sea urchin protein is responsible for the synthesis of 2-acetyl-1,3,6,8-tetrahydroxynaphthalene (ATHN). Since ATHN is a plausible precursor of echinochromes, this result defines a biosynthetic pathway to the ubiquitous echinoderm pigments and rewrites the previous hypothesis for echinochrome biosynthesis. Truncation experiments showed that, unlike other type I iterative PKSs so far characterized, SpPks1 produces the naphthalene core using solely ketoacylsynthase (KS), acyltransferase, and acyl carrier protein domains, delineating a unique class of animal nonreducing aromatic PKSs (aPKSs). A series of amino acids in the KS domain define the family and are likely crucial in cyclization activity. Phylogenetic analyses indicate that SpPks1 and its homologs are widespread in echinoderms and their closest relatives, the acorn worms, reinforcing their fundamental importance to echinoderm biology. While the animal microbiome is known to produce aromatic polyketides, this work provides biochemical evidence that animals themselves also harbor ancient, convergent, dedicated pathways to carbocyclic aromatic polyketides. More fundamentally, biochemical analysis of SpPks1 begins to define the vast and unexplored biosynthetic space of the ubiquitous animal PKS family.


Assuntos
Policetídeo Sintases , Policetídeos , Animais , Naftalenos , Filogenia , Policetídeo Sintases/metabolismo , Policetídeos/metabolismo , Ouriços-do-Mar/metabolismo
2.
Nucleic Acids Res ; 44(18): 8810-8825, 2016 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-27568004

RESUMO

Cyanobacterial regulation of gene expression must contend with a genome organization that lacks apparent functional context, as the majority of cellular processes and metabolic pathways are encoded by genes found at disparate locations across the genome and relatively few transcription factors exist. In this study, global transcript abundance data from the model cyanobacterium Synechococcus sp. PCC 7002 grown under 42 different conditions was analyzed using Context-Likelihood of Relatedness (CLR). The resulting network, organized into 11 modules, provided insight into transcriptional network topology as well as grouping genes by function and linking their response to specific environmental variables. When used in conjunction with genome sequences, the network allowed identification and expansion of novel potential targets of both DNA binding proteins and sRNA regulators. These results offer a new perspective into the multi-level regulation that governs cellular adaptations of the fast-growing physiologically robust cyanobacterium Synechococcus sp. PCC 7002 to changing environmental variables. It also provides a methodological high-throughput approach to studying multi-scale regulatory mechanisms that operate in cyanobacteria. Finally, it provides valuable context for integrating systems-level data to enhance gene grouping based on annotated function, especially in organisms where traditional context analyses cannot be implemented due to lack of operon-based functional organization.


Assuntos
Regulação Bacteriana da Expressão Gênica , Redes Reguladoras de Genes , Synechococcus/genética , Transcriptoma , Sítios de Ligação , Análise por Conglomerados , Perfilação da Expressão Gênica , Genoma Bacteriano , Motivos de Nucleotídeos , Matrizes de Pontuação de Posição Específica , Ligação Proteica , RNA não Traduzido , Synechococcus/metabolismo , Fatores de Transcrição/metabolismo
3.
Appl Environ Microbiol ; 82(24): 7227-7235, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27742679

RESUMO

Photobiologically synthesized hydrogen (H2) gas is carbon neutral to produce and clean to combust, making it an ideal biofuel. Cyanothece sp. strain ATCC 51142 is a cyanobacterium capable of performing simultaneous oxygenic photosynthesis and H2 production, a highly perplexing phenomenon because H2 evolving enzymes are O2 sensitive. We employed a system-level in vivo chemoproteomic profiling approach to explore the cellular dynamics of protein thiol redox and how thiol redox mediates the function of the dinitrogenase NifHDK, an enzyme complex capable of aerobic hydrogenase activity. We found that NifHDK responds to intracellular redox conditions and may act as an emergency electron valve to prevent harmful reactive oxygen species formation in concert with other cell strategies for maintaining redox homeostasis. These results provide new insight into cellular redox dynamics useful for advancing photolytic bioenergy technology and reveal a new understanding for the biological function of NifHDK. IMPORTANCE: Here, we demonstrate that high levels of hydrogen synthesis can be induced as a protection mechanism against oxidative stress via the dinitrogenase enzyme complex in Cyanothece sp. strain ATCC 51142. This is a previously unknown feature of cyanobacterial dinitrogenase, and we anticipate that it may represent a strategy to exploit cyanobacteria for efficient and scalable hydrogen production. We utilized a chemoproteomic approach to capture the in situ dynamics of reductant partitioning within the cell, revealing proteins and reactive thiols that may be involved in redox sensing and signaling. Additionally, this method is widely applicable across biological systems to achieve a greater understanding of how cells navigate their environment and how redox chemistry can be utilized to alter metabolism and achieve homeostasis.


Assuntos
Proteínas de Bactérias/metabolismo , Cyanothece/enzimologia , Hidrogênio/metabolismo , Nitrogenase/metabolismo , Estresse Oxidativo , Proteínas de Bactérias/genética , Cyanothece/genética , Cyanothece/metabolismo , Cyanothece/efeitos da radiação , Luz , Nitrogenase/genética , Oxirredução , Oxigênio/metabolismo , Fotossíntese/efeitos da radiação
4.
Nature ; 461(7267): 1139-43, 2009 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-19847268

RESUMO

Polyketides are a class of natural products with diverse structures and biological activities. The structural variability of aromatic products of fungal nonreducing, multidomain iterative polyketide synthases (NR-PKS group of IPKSs) results from regiospecific cyclizations of reactive poly-beta-keto intermediates. How poly-beta-keto species are synthesized and stabilized, how their chain lengths are determined, and, in particular, how specific cyclization patterns are controlled have been largely inaccessible and functionally unknown until recently. A product template (PT) domain is responsible for controlling specific aldol cyclization and aromatization of these mature polyketide precursors, but the mechanistic basis is unknown. Here we present the 1.8 A crystal structure and mutational studies of a dissected PT monodomain from PksA, the NR-PKS that initiates the biosynthesis of the potent hepatocarcinogen aflatoxin B(1) in Aspergillus parasiticus. Despite having minimal sequence similarity to known enzymes, the structure displays a distinct 'double hot dog' (DHD) fold. Co-crystal structures with palmitate or a bicyclic substrate mimic illustrate that PT can bind both linear and bicyclic polyketides. Docking and mutagenesis studies reveal residues important for substrate binding and catalysis, and identify a phosphopantetheine localization channel and a deep two-part interior binding pocket and reaction chamber. Sequence similarity and extensive conservation of active site residues in PT domains suggest that the mechanistic insights gleaned from these studies will prove general for this class of IPKSs, and lay a foundation for defining the molecular rules controlling NR-PKS cyclization specificity.


Assuntos
Aspergillus/enzimologia , Policetídeo Sintases/química , Policetídeo Sintases/metabolismo , Aflatoxina B1/biossíntese , Antracenos/metabolismo , Antraquinonas/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Ciclização , Modelos Moleculares , Oxirredução , Ácido Palmítico/metabolismo , Estrutura Terciária de Proteína , Relação Estrutura-Atividade
5.
Analyst ; 139(7): 1609-13, 2014 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-24571001

RESUMO

A novel microfluidic reactor for biofilm growth and in situ characterization using time-of-flight secondary ion mass spectrometry (ToF-SIMS) was constructed to enable two-dimensional chemical imaging of hydrated biofilms. We demonstrate the detection of characteristic fatty acid fragments from microfluidic reactor-grown biofilms and illustrate advantages of hydrated-state ToF-SIMS imaging.


Assuntos
Biofilmes/crescimento & desenvolvimento , Técnicas Analíticas Microfluídicas/métodos , Imagem Molecular/métodos , Espectrometria de Massa de Íon Secundário/métodos , Água , Desenho de Equipamento , Técnicas Analíticas Microfluídicas/instrumentação , Imagem Molecular/instrumentação , Espectrometria de Massa de Íon Secundário/instrumentação , Água/química
6.
PLoS Comput Biol ; 8(4): e1002460, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22529767

RESUMO

Genome-scale metabolic models have proven useful for answering fundamental questions about metabolic capabilities of a variety of microorganisms, as well as informing their metabolic engineering. However, only a few models are available for oxygenic photosynthetic microorganisms, particularly in cyanobacteria in which photosynthetic and respiratory electron transport chains (ETC) share components. We addressed the complexity of cyanobacterial ETC by developing a genome-scale model for the diazotrophic cyanobacterium, Cyanothece sp. ATCC 51142. The resulting metabolic reconstruction, iCce806, consists of 806 genes associated with 667 metabolic reactions and includes a detailed representation of the ETC and a biomass equation based on experimental measurements. Both computational and experimental approaches were used to investigate light-driven metabolism in Cyanothece sp. ATCC 51142, with a particular focus on reductant production and partitioning within the ETC. The simulation results suggest that growth and metabolic flux distributions are substantially impacted by the relative amounts of light going into the individual photosystems. When growth is limited by the flux through photosystem I, terminal respiratory oxidases are predicted to be an important mechanism for removing excess reductant. Similarly, under photosystem II flux limitation, excess electron carriers must be removed via cyclic electron transport. Furthermore, in silico calculations were in good quantitative agreement with the measured growth rates whereas predictions of reaction usage were qualitatively consistent with protein and mRNA expression data, which we used to further improve the resolution of intracellular flux values.


Assuntos
Proteínas de Bactérias/metabolismo , Ciclo do Carbono/fisiologia , Cyanothece/metabolismo , Genoma/fisiologia , Modelos Biológicos , Proteoma/metabolismo , Transdução de Sinais/fisiologia , Ciclo do Carbono/efeitos da radiação , Simulação por Computador , Cyanothece/efeitos da radiação , Luz , Transdução de Sinais/efeitos da radiação
7.
Appl Environ Microbiol ; 77(23): 8234-40, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21965410

RESUMO

Shewanella oneidensis MR-1 is a facultative anaerobe that derives energy by coupling organic matter oxidation to the reduction of a wide range of electron acceptors. Here, we quantitatively assessed the lactate and pyruvate metabolism of MR-1 under three distinct conditions: electron acceptor-limited growth on lactate with O(2), lactate with fumarate, and pyruvate fermentation. The latter does not support growth but provides energy for cell survival. Using physiological and genetic approaches combined with flux balance analysis, we showed that the proportion of ATP produced by substrate-level phosphorylation varied from 33% to 72.5% of that needed for growth depending on the electron acceptor nature and availability. While being indispensable for growth, the respiration of fumarate does not contribute significantly to ATP generation and likely serves to remove formate, a product of pyruvate formate-lyase-catalyzed pyruvate disproportionation. Under both tested respiratory conditions, S. oneidensis MR-1 carried out incomplete substrate oxidation, whereby the tricarboxylic acid (TCA) cycle did not contribute significantly. Pyruvate dehydrogenase was not involved in lactate metabolism under conditions of O(2) limitation but was required for anaerobic growth, likely by supplying reducing equivalents for biosynthesis. The results suggest that pyruvate fermentation by S. oneidensis MR-1 cells represents a combination of substrate-level phosphorylation and respiration, where pyruvate serves as an electron donor and an electron acceptor. Pyruvate reduction to lactate at the expense of formate oxidation is catalyzed by a recently described new type of oxidative NAD(P)H-independent d-lactate dehydrogenase (Dld-II). The results further indicate that pyruvate reduction coupled to formate oxidation may be accompanied by the generation of proton motive force.


Assuntos
Fumaratos/metabolismo , Ácido Láctico/metabolismo , Oxigênio/metabolismo , Ácido Pirúvico/metabolismo , Shewanella/crescimento & desenvolvimento , Shewanella/metabolismo , Trifosfato de Adenosina/biossíntese , Metabolismo Energético , Fermentação , Formiatos/metabolismo , Força Próton-Motriz
8.
PLoS Comput Biol ; 6(6): e1000822, 2010 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-20589080

RESUMO

Shewanellae are gram-negative facultatively anaerobic metal-reducing bacteria commonly found in chemically (i.e., redox) stratified environments. Occupying such niches requires the ability to rapidly acclimate to changes in electron donor/acceptor type and availability; hence, the ability to compete and thrive in such environments must ultimately be reflected in the organization and utilization of electron transfer networks, as well as central and peripheral carbon metabolism. To understand how Shewanella oneidensis MR-1 utilizes its resources, the metabolic network was reconstructed. The resulting network consists of 774 reactions, 783 genes, and 634 unique metabolites and contains biosynthesis pathways for all cell constituents. Using constraint-based modeling, we investigated aerobic growth of S. oneidensis MR-1 on numerous carbon sources. To achieve this, we (i) used experimental data to formulate a biomass equation and estimate cellular ATP requirements, (ii) developed an approach to identify cycles (such as futile cycles and circulations), (iii) classified how reaction usage affects cellular growth, (iv) predicted cellular biomass yields on different carbon sources and compared model predictions to experimental measurements, and (v) used experimental results to refine metabolic fluxes for growth on lactate. The results revealed that aerobic lactate-grown cells of S. oneidensis MR-1 used less efficient enzymes to couple electron transport to proton motive force generation, and possibly operated at least one futile cycle involving malic enzymes. Several examples are provided whereby model predictions were validated by experimental data, in particular the role of serine hydroxymethyltransferase and glycine cleavage system in the metabolism of one-carbon units, and growth on different sources of carbon and energy. This work illustrates how integration of computational and experimental efforts facilitates the understanding of microbial metabolism at a systems level.


Assuntos
Biologia Computacional/métodos , Modelos Biológicos , Shewanella/crescimento & desenvolvimento , Shewanella/metabolismo , Trifosfato de Adenosina/metabolismo , Biomassa , Ácido Láctico/metabolismo , Modelos Lineares , Redes e Vias Metabólicas , Oxigênio/metabolismo , Fenótipo , Reprodutibilidade dos Testes
9.
J Am Soc Mass Spectrom ; 32(3): 648-652, 2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33258588

RESUMO

Many organisms process carbon and other nutrients to generate energy through aerobic respiration where organic carbon compounds are broken down and oxygen is consumed, producing carbon dioxide and water. Respiration is indicative of active metabolism, and respiration rates are proportional to the amount of living biomass in an ecosystem. Although there are many methods for measuring respiration rates in the laboratory, current systems, such as infrared gas analyzers, are limited in their ability to independently resolve isotopomer fluxes across a range of relevant gases including both CO2 and O2 in real-time. Therefore, monitoring of biological respiration in real time under controlled laboratory conditions would enable better understanding of cellular physiology. To address this challenge, we developed a real time mass spectrometry (RTMS) manifold that simultaneously measures production and consumption of multiple gases and their isotopologues in seconds with the speed and sensitivity necessary to characterize rapidly changing respiration events as they occur. This universal manifold can be fitted to a variety of instruments and affords the same analytical precision and accuracy of the instrument while allowing for the real time measurements. Here, we paired the manifold to a single quad MS with an electron impact (EI) source operated in scan mode to detect extracted target gases by their respective masses (e.g., 12CO2 at mass 44, 13CO2 at 45). We demonstrated applicability of the RTMS instrument to different biological ecosystems (bacterial cultures, plants, and soil), and in all cases, we were able to detect simultaneous and rapid measurements of multiple gases in real time, providing novel insights into complex respiratory metabolism and the influence of biological and environmental factors.


Assuntos
Dióxido de Carbono/análise , Ecossistema , Espectrometria de Massas/métodos , Arabidopsis/metabolismo , Dióxido de Carbono/metabolismo , Folhas de Planta/metabolismo , Solo/química
10.
Sci Rep ; 11(1): 15592, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34341414

RESUMO

A near-complete diploid nuclear genome and accompanying circular mitochondrial and chloroplast genomes have been assembled from the elite commercial diatom species Nitzschia inconspicua. The 50 Mbp haploid size of the nuclear genome is nearly double that of model diatom Phaeodactylum tricornutum, but 30% smaller than closer relative Fragilariopsis cylindrus. Diploid assembly, which was facilitated by low levels of allelic heterozygosity (2.7%), included 14 candidate chromosome pairs composed of long, syntenic contigs, covering 93% of the total assembly. Telomeric ends were capped with an unusual 12-mer, G-rich, degenerate repeat sequence. Predicted proteins were highly enriched in strain-specific marker domains associated with cell-surface adhesion, biofilm formation, and raphe system gliding motility. Expanded species-specific families of carbonic anhydrases suggest potential enhancement of carbon concentration efficiency, and duplicated glycolysis and fatty acid synthesis pathways across cytosolic and organellar compartments may enhance peak metabolic output, contributing to competitive success over other organisms in mixed cultures. The N. inconspicua genome delivers a robust new reference for future functional and transcriptomic studies to illuminate the physiology of benthic pennate diatoms and harness their unique adaptations to support commercial algae biomass and bioproduct production.


Assuntos
Biomassa , Diatomáceas/genética , Diploide , Genoma , Anidrases Carbônicas/genética , Mapeamento de Sequências Contíguas , Diatomáceas/classificação , Tamanho do Genoma , Genoma de Cloroplastos , Genoma Mitocondrial , Fases de Leitura Aberta/genética , Filogenia , Sequências Repetitivas de Ácido Nucleico/genética , Análise de Sequência de DNA , Sintenia/genética
11.
J Bacteriol ; 190(15): 5512-6, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18502849

RESUMO

MtrC and OmcA are cell surface-exposed lipoproteins important for reducing solid metal oxides. Deletions of type II secretion system (T2SS) genes reduced their extracellular release and their accessibility to the proteinase K treatment, demonstrating the direct involvement of T2SS in translocation of MtrC and OmcA to the bacterial cell surface.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Citocromos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Shewanella/metabolismo , Deleção de Genes , Proteínas de Membrana Transportadoras/genética , Shewanella/genética
12.
ISME J ; 12(8): 2011-2023, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29795448

RESUMO

The advent of high-throughput 'omics approaches coupled with computational analyses to reconstruct individual genomes from metagenomes provides a basis for species-resolved functional studies. Here, a mutual information approach was applied to build a gene association network of a commensal consortium, in which a unicellular cyanobacterium Thermosynechococcus elongatus BP1 supported the heterotrophic growth of Meiothermus ruber strain A. Specifically, we used the context likelihood of relatedness (CLR) algorithm to generate a gene association network from 25 transcriptomic datasets representing distinct growth conditions. The resulting interspecies network revealed a number of linkages between genes in each species. While many of the linkages were supported by the existing knowledge of phototroph-heterotroph interactions and the metabolism of these two species several new interactions were inferred as well. These include linkages between amino acid synthesis and uptake genes, as well as carbohydrate and vitamin metabolism, terpenoid metabolism and cell adhesion genes. Further topological examination and functional analysis of specific gene associations suggested that the interactions are likely to center around the exchange of energetically costly metabolites between T. elongatus and M. ruber. Both the approach and conclusions derived from this work are widely applicable to microbial communities for identification of the interactions between species and characterization of community functioning as a whole.


Assuntos
Bactérias/genética , Cianobactérias/genética , Algoritmos , Bactérias/crescimento & desenvolvimento , Fenômenos Fisiológicos Bacterianos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cianobactérias/crescimento & desenvolvimento , Cianobactérias/fisiologia , Redes Reguladoras de Genes , Processos Heterotróficos , Metagenoma , Microbiota , Especificidade da Espécie , Transcriptoma
13.
Bioresour Technol ; 228: 250-256, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28092828

RESUMO

A new co-cultivation technology is presented that converts greenhouse gasses, CH4 and CO2, into microbial biomass. The methanotrophic bacterium, Methylomicrobium alcaliphilum 20z, was coupled to a cyanobacterium, Synechococcus PCC 7002 via oxygenic photosynthesis. The system exhibited robust growth on diverse gas mixtures ranging from biogas to those representative of a natural gas feedstock. A continuous processes was developed on a synthetic natural gas feed that achieved steady-state by imposing coupled light and O2 limitations on the cyanobacterium and methanotroph, respectively. Continuous co-cultivation resulted in an O2 depleted reactor and does not require CH4/O2 mixtures to be fed into the system, thereby enhancing process safety considerations over traditional methanotroph mono-culture platforms. This co-culture technology is scalable with respect to its ability to utilize different gas streams and its biological components constructed from model bacteria that can be metabolically customized to produce a range of biofuels and bioproducts.


Assuntos
Bactérias/metabolismo , Dióxido de Carbono/metabolismo , Técnicas de Cocultura/métodos , Metano/metabolismo , Bactérias/crescimento & desenvolvimento , Técnicas de Cultura Celular por Lotes , Biocombustíveis/microbiologia , Biomassa , Citometria de Fluxo , Oxigênio/metabolismo , Fotossíntese , Synechococcus/crescimento & desenvolvimento , Synechococcus/metabolismo
14.
mSystems ; 2(2)2017.
Artigo em Inglês | MEDLINE | ID: mdl-28289730

RESUMO

The mechanisms by which microbes interact in communities remain poorly understood. Here, we interrogated specific interactions between photoautotrophic and heterotrophic members of a model consortium to infer mechanisms that mediate metabolic coupling and acclimation to partnership. This binary consortium was composed of a cyanobacterium, Thermosynechococcus elongatus BP-1, which supported growth of an obligate aerobic heterotroph, Meiothermus ruber strain A, by providing organic carbon, O2, and reduced nitrogen. Species-resolved transcriptomic analyses were used in combination with growth and photosynthesis kinetics to infer interactions and the environmental context under which they occur. We found that the efficiency of biomass production and resistance to stress induced by high levels of dissolved O2 increased, beyond axenic performance, as a result of heterotrophic partnership. Coordinated transcriptional responses transcending both species were observed and used to infer specific interactions resulting from the synthesis and exchange of resources. The cyanobacterium responded to heterotrophic partnership by altering expression of core genes involved with photosynthesis, carbon uptake/fixation, vitamin synthesis, and scavenging of reactive oxygen species (ROS). IMPORTANCE This study elucidates how a cyanobacterial primary producer acclimates to heterotrophic partnership by modulating the expression levels of key metabolic genes. Heterotrophic bacteria can indirectly regulate the physiology of the photoautotrophic primary producers, resulting in physiological changes identified here, such as increased intracellular ROS. Some of the interactions inferred from this model system represent putative principles of metabolic coupling in phototrophic-heterotrophic partnerships.

15.
mBio ; 7(4)2016 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-27460798

RESUMO

UNLABELLED: Harnessing the metabolic potential of photosynthetic microbes for next-generation biotechnology objectives requires detailed scientific understanding of the physiological constraints and regulatory controls affecting carbon partitioning between biomass, metabolite storage pools, and bioproduct synthesis. We dissected the cellular mechanisms underlying the remarkable physiological robustness of the euryhaline unicellular cyanobacterium Synechococcus sp. strain PCC 7002 (Synechococcus 7002) and identify key mechanisms that allow cyanobacteria to achieve unprecedented photoautotrophic productivities (~2.5-h doubling time). Ultrafast growth of Synechococcus 7002 was supported by high rates of photosynthetic electron transfer and linked to significantly elevated transcription of precursor biosynthesis and protein translation machinery. Notably, no growth or photosynthesis inhibition signatures were observed under any of the tested experimental conditions. Finally, the ultrafast growth in Synechococcus 7002 was also linked to a 300% expansion of average cell volume. We hypothesize that this cellular adaptation is required at high irradiances to support higher cell division rates and reduce deleterious effects, corresponding to high light, through increased carbon and reductant sequestration. IMPORTANCE: Efficient coupling between photosynthesis and productivity is central to the development of biotechnology based on solar energy. Therefore, understanding the factors constraining maximum rates of carbon processing is necessary to identify regulatory mechanisms and devise strategies to overcome productivity constraints. Here, we interrogate the molecular mechanisms that operate at a systems level to allow cyanobacteria to achieve ultrafast growth. This was done by considering growth and photosynthetic kinetics with global transcription patterns. We have delineated putative biological principles that allow unicellular cyanobacteria to achieve ultrahigh growth rates through photophysiological acclimation and effective management of cellular resource under different growth regimes.


Assuntos
Adaptação Fisiológica , Processos Autotróficos , Fotossíntese , Synechococcus/fisiologia , Carbono/metabolismo , Luz , Oxirredução , Synechococcus/citologia , Synechococcus/crescimento & desenvolvimento , Synechococcus/metabolismo
16.
J Microbiol Methods ; 62(3): 259-71, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15979749

RESUMO

Rapid identification of microorganisms using matrix assisted laser desorption/ionization (MALDI) is a rapidly growing area of research due to the minimal sample preparation, speed of analysis and broad applicability of the technique. This approach relies on expressed biochemical markers, often proteins, to identify microorganisms. Therefore, variations in culture conditions that affect protein expression may limit the ability of MALDI-MS to correctly identify an organism. We have expanded our efforts to investigate the effects of culture conditions on MALDI-MS signatures to specifically examine the effects of pH, growth rate and temperature. Continuous cultures maintained in bioreactors were used to maintain specific growth rates and pH for E. coli HB 101. Despite measurable morphological differences between growth conditions, the MALDI-MS data associated each culture with the appropriate library entry (E. coli HB 101 generated using batch culture on a LB media), independent of pH or growth rate. The lone exception was for a biofilm sample collected from one of the reactors which had no appreciable degree of association with the correct library entry. Within the data set for planktonic organisms, variations in growth rate created the largest variation between fingerprints. The effect of varying growth temperature on Y. enterocolitica was also examined. While the anticipated effects on phenotype were observed, the MALDI-MS technique provided the proper identification.


Assuntos
Proteínas de Bactérias/isolamento & purificação , Mapeamento de Peptídeos/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Escherichia coli/química , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/isolamento & purificação , Fermentação , Concentração de Íons de Hidrogênio , Técnicas Microbiológicas , Temperatura , Yersinia enterocolitica/química , Yersinia enterocolitica/crescimento & desenvolvimento
17.
Artigo em Inglês | MEDLINE | ID: mdl-25964950

RESUMO

The cyanobacterium Synechococcus sp. Pasteur culture collection 7002 was genetically engineered to synthesize biofuel-compatible medium-chain fatty acids (FAs) during photoautotrophic growth. Expression of a heterologous lauroyl-acyl carrier protein (C12:0-ACP) thioesterase with concurrent deletion of the endogenous putative acyl-ACP synthetase led to secretion of transesterifiable C12:0 FA in CO2-supplemented batch cultures. When grown at steady state over a range of light intensities in a light-emitting diode turbidostat photobioreactor, the C12-secreting mutant exhibited a modest reduction in growth rate and increased O2 evolution relative to the wild-type (WT). Inhibition of (i) glycogen synthesis by deletion of the glgC-encoded ADP-glucose pyrophosphorylase (AGPase) and (ii) protein synthesis by nitrogen deprivation were investigated as potential mechanisms for metabolite redistribution to increase FA synthesis. Deletion of AGPase led to a 10-fold decrease in reducing carbohydrates and secretion of organic acids during nitrogen deprivation consistent with an energy spilling phenotype. When the carbohydrate-deficient background (ΔglgC) was modified for C12 secretion, no increase in C12 was achieved during nutrient replete growth, and no C12 was recovered from any strain upon nitrogen deprivation under the conditions used. At steady state, the growth rate of the ΔglgC strain saturated at a lower light intensity than the WT, but O2 evolution was not compromised and became increasingly decoupled from growth rate with rising irradiance. Photophysiological properties of the ΔglgC strain suggest energy dissipation from photosystem II and reconfiguration of electron flow at the level of the plastoquinone pool.

18.
ACS Chem Biol ; 10(6): 1443-9, 2015 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-25714897

RESUMO

Nonreducing polyketide synthases (NR-PKSs) are unique among PKSs in their domain structure, notably including a starter unit:acyl-carrier protein (ACP) transacylase (SAT) domain that selects an acyl group as the primer for biosynthesis, most commonly acetyl-CoA from central metabolism. This clan of mega-enzymes resembles fatty acid synthases (FASs) by sharing both their central chain elongation steps and their capacity for iterative catalysis. In this mode of synthesis, catalytic domains involved in chain extension exhibit substrate plasticity to accommodate growing chains as small as two carbons to 20 or more. PksA is the NR-PKS central to the biosynthesis of the mycotoxin aflatoxin B1 whose SAT domain accepts an unusual hexanoyl starter from a dedicated yeast-like FAS. Explored in this paper is the ability of PksA to utilize a selection of potential starter units as substrates to initiate and sustain extension and cyclization to on-target, programmed polyketide synthesis. Most of these starter units were successfully accepted and properly processed by PksA to achieve biosynthesis of the predicted naphthopyrone product. Analysis of the on-target and derailment products revealed trends of tolerance by individual PksA domains to alternative starter units. In addition, natural and un-natural variants of the active site cysteine were examined and found to be capable of biosynthesis, suggesting possible direct loading of starter units onto the ß-ketoacyl synthase (KS) domain. In light of the data assembled here, the predictable synthesis of unnatural products by NR-PKSs is more fully defined.


Assuntos
Aspergillus/enzimologia , Proteínas Fúngicas/química , Engenharia Metabólica , Policetídeo Sintases/química , Policetídeos/química , Acetilcoenzima A/química , Acetilcoenzima A/metabolismo , Aflatoxina B1/biossíntese , Aflatoxina B1/química , Aspergillus/química , Aspergillus/genética , Domínio Catalítico , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Expressão Gênica , Cinética , Naftalenos/química , Naftalenos/metabolismo , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Policetídeos/metabolismo , Pironas/química , Pironas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
19.
Life (Basel) ; 5(2): 1127-40, 2015 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-25826650

RESUMO

Cyanobacteria dynamically relay environmental inputs to intracellular adaptations through a coordinated adjustment of photosynthetic efficiency and carbon processing rates. The output of such adaptations is reflected through changes in transcriptional patterns and metabolic flux distributions that ultimately define growth strategy. To address interrelationships between metabolism and regulation, we performed integrative analyses of metabolic and gene co-expression networks in a model cyanobacterium, Synechococcus sp. PCC 7002. Centrality analyses using the gene co-expression network identified a set of key genes, which were defined here as "topologically important." Parallel in silico gene knock-out simulations, using the genome-scale metabolic network, classified what we termed as "functionally important" genes, deletion of which affected growth or metabolism. A strong positive correlation was observed between topologically and functionally important genes. Functionally important genes exhibited variable levels of topological centrality; however, the majority of topologically central genes were found to be functionally essential for growth. Subsequent functional enrichment analysis revealed that both functionally and topologically important genes in Synechococcus sp. PCC 7002 are predominantly associated with translation and energy metabolism, two cellular processes critical for growth. This research demonstrates how synergistic network-level analyses can be used for reconciliation of metabolic and gene expression data to uncover fundamental biological principles.

20.
Sci Rep ; 5: 16004, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26525576

RESUMO

To date, the proposed mechanisms of nitrogenase-driven photosynthetic H2 production by the diazotrophic unicellular cyanobacterium Cyanothece sp. ATCC 51142 have assumed that reductant and ATP requirements are derived solely from glycogen oxidation and cyclic-electron flow around photosystem I. Through genome-scale transcript and protein profiling, this study presents and tests a new hypothesis on the metabolic relationship between oxygenic photosynthesis and nitrogenase-mediated H2 production in Cyanothece 51142. Our results show that net-positive rates of oxygenic photosynthesis and increased expression of photosystem II reaction centers correspond and are synchronized with nitrogenase expression and H2 production. These findings provide a new and more complete view on the metabolic processes contributing to the energy budget of photosynthetic H2 production and highlight the role of concurrent photocatalytic H2O oxidation as a participating process.


Assuntos
Cyanothece/metabolismo , Hidrogênio/metabolismo , Nitrogenase/metabolismo , Oxigênio/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Análise por Conglomerados , Cyanothece/enzimologia , Cyanothece/genética , Metabolismo Energético , Perfilação da Expressão Gênica , Glicogênio/química , Glicogênio/metabolismo , Hidrogênio/química , Hidrogenase/genética , Hidrogenase/metabolismo , Cinética , Nitrogenase/genética , Oxirredução , Fotossíntese , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo , Proteômica , RNA Mensageiro/metabolismo , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA