Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Philos Trans A Math Phys Eng Sci ; 373(2051)2015 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-26303917

RESUMO

A historical introduction is given of the theory of normal forms for simplifying nonlinear dynamical systems close to resonances or bifurcation points. The specific focus is on mechanical vibration problems, described by finite degree-of-freedom second-order-in-time differential equations. A recent variant of the normal form method, that respects the specific structure of such models, is recalled. It is shown how this method can be placed within the context of the general theory of normal forms provided the damping and forcing terms are treated as unfolding parameters. The approach is contrasted to the alternative theory of nonlinear normal modes (NNMs) which is argued to be problematic in the presence of damping. The efficacy of the normal form method is illustrated on a model of the vibration of a taut cable, which is geometrically nonlinear. It is shown how the method is able to accurately predict NNM shapes and their bifurcations.

2.
Proc Math Phys Eng Sci ; 476(2243): 20200589, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33362422

RESUMO

Nonlinear dynamic analysis of complex engineering structures modelled using commercial finite element (FE) software is computationally expensive. Indirect reduced-order modelling strategies alleviate this cost by constructing low-dimensional models using a static solution dataset from the FE model. The applicability of such methods is typically limited to structures in which (a) the main source of nonlinearity is the quasi-static coupling between transverse and in-plane modes (i.e. membrane stretching); and (b) the amount of in-plane displacement is limited. We show that the second requirement arises from the fact that, in existing methods, in-plane kinetic energy is assumed to be negligible. For structures such as thin plates and slender beams with fixed/pinned boundary conditions, this is often reasonable, but in structures with free boundary conditions (e.g. cantilever beams), this assumption is violated. Here, we exploit the concept of nonlinear manifolds to show how the in-plane kinetic energy can be accounted for in the reduced dynamics, without requiring any additional information from the FE model. This new insight enables indirect reduction methods to be applied to a far wider range of structures while maintaining accuracy to higher deflection amplitudes. The accuracy of the proposed method is validated using an FE model of a cantilever beam.

3.
Proc Math Phys Eng Sci ; 476(2237): 20200028, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32523416

RESUMO

Nonlinear normal modes (NNMs) are a widely used tool for studying nonlinear mechanical systems. The most commonly observed NNMs are synchronous (i.e. single-mode, in-phase and anti-phase NNMs). Additionally, asynchronous NNMs in the form of out-of-unison motion, where the underlying linear modes have a phase difference of 90°, have also been observed. This paper extends these concepts to consider general asynchronous NNMs, where the modes exhibit a phase difference that is not necessarily equal to 90°. A single-mass, 2 d.f. model is firstly used to demonstrate that the out-of-unison NNMs evolve to general asynchronous NNMs with the breaking of the geometrically orthogonal structure of the system. Analytical analysis further reveals that, along with the breaking of the orthogonality, the out-of-unison NNM branches evolve into branches which exhibit amplitude-dependent phase relationships. These NNM branches are introduced here and termed phase-varying backbone curves. To explore this further, a model of a cable, with a support near one end, is used to demonstrate the existence of phase-varying backbone curves (and corresponding general asynchronous NNMs) in a common engineering structure.

4.
Proc Math Phys Eng Sci ; 475(2232): 20190374, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31892833

RESUMO

Isolated backbone curves represent significant dynamic responses of nonlinear systems; however, as they are disconnected from the primary responses, they are challenging to predict and compute. To explore the conditions for the existence of isolated backbone curves, a generalized two-mode system, which is representative of two extensively studied examples, is used. A symmetric two-mass oscillator is initially studied and, as has been previously observed, this exhibits a perfect bifurcation between its backbone curves. As this symmetry is broken, the bifurcation splits to form an isolated backbone curve. Here, it is demonstrated that this perfect bifurcation, indicative of a symmetric structure, may be preserved when the symmetry is broken under certain conditions; these are derived analytically. With the symmetry broken, the second example-a single-mode nonlinear structure with a nonlinear tuned mass damper-is considered. The evolution of the system's backbone curves is investigated in nonlinear parameter space. It is found that this space can be divided into several regions, within which the backbone curves share similar topological features, defining the conditions for the existence of isolated backbone curves. This allows these features to be more easily accounted for, or eliminated, when designing nonlinear systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA