Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cancer Sci ; 113(10): 3547-3557, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35849084

RESUMO

Cancer cachexia is a multifactorial disease that causes continuous skeletal muscle wasting. Thereby, it seems to be a key determinant of cancer-related death. Although anamorelin, a ghrelin receptor agonist, has been approved in Japan for the treatment of cachexia, few medical treatments for cancer cachexia are currently available. Myostatin (MSTN)/growth differentiation factor 8, which belongs to the transforming growth factor-ß family, is a negative regulator of skeletal muscle mass, and inhibition of MSTN signaling is expected to be a therapeutic target for muscle-wasting diseases. Indeed, we have reported that peptide-2, an MSTN-inhibiting peptide from the MSTN prodomain, alleviates muscle wasting due to cancer cachexia. Herein, we evaluated the therapeutic benefit of myostatin inhibitory D-peptide-35 (MID-35), whose stability and activity were more improved than those of peptide-2 in cancer cachexia model mice. The biologic effects of MID-35 were better than those of peptide-2. Intramuscular administration of MID-35 effectively alleviated skeletal muscle atrophy in cachexia model mice, and the combination therapy of MID-35 with anamorelin increased food intake and maximized grip strength, resulting in longer survival. Our results suggest that this combination might be a novel therapeutic tool to suppress muscle wasting in cancer cachexia.


Assuntos
Produtos Biológicos , Neoplasias , Animais , Produtos Biológicos/farmacologia , Caquexia/tratamento farmacológico , Caquexia/etiologia , Caquexia/patologia , Modelos Animais de Doenças , Hidrazinas , Camundongos , Músculo Esquelético , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/etiologia , Atrofia Muscular/patologia , Miostatina , Neoplasias/complicações , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Oligopeptídeos , Peptídeos/farmacologia , Receptores de Grelina/uso terapêutico , Fatores de Crescimento Transformadores/farmacologia , Fatores de Crescimento Transformadores/uso terapêutico
2.
J Biol Chem ; 295(27): 9105-9120, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32371398

RESUMO

Modification of the transforming growth factor ß (TGF-ß) signaling components by (de)ubiquitination is emerging as a key regulatory mechanism that controls cell signaling responses in health and disease. Here, we show that the deubiquitinating enzyme UBH-1 in Caenorhabditis elegans and its human homolog, ubiquitin C-terminal hydrolase-L1 (UCH-L1), stimulate DAF-7/TGF-ß signaling, suggesting that this mode of regulation of TGF-ß signaling is conserved across animal species. The dauer larva-constitutive C. elegans phenotype caused by defective DAF-7/TGF-ß signaling was enhanced and suppressed, respectively, by ubh-1 deletion and overexpression in the loss-of-function genetic backgrounds of daf7, daf-1/TGF-ßRI, and daf4/R-SMAD, but not of daf-8/R-SMAD. This suggested that UBH-1 may stimulate DAF-7/TGF-ß signaling via DAF-8/R-SMAD. Therefore, we investigated the effect of UCH-L1 on TGF-ß signaling via its intracellular effectors, i.e. SMAD2 and SMAD3, in mammalian cells. Overexpression of UCH-L1, but not of UCH-L3 (the other human homolog of UBH1) or of the catalytic mutant UCH-L1C90A, enhanced TGF-ß/SMAD-induced transcriptional activity, indicating that the deubiquitination activity of UCH-L1 is indispensable for enhancing TGF-ß/SMAD signaling. We also found that UCH-L1 interacts, deubiquitinates, and stabilizes SMAD2 and SMAD3. Under hypoxia, UCH-L1 expression increased and TGF-ß/SMAD signaling was potentiated in the A549 human lung adenocarcinoma cell line. Notably, UCH-L1-deficient A549 cells were impaired in tumorigenesis, and, unlike WT UCH-L1, a UCH-L1 variant lacking deubiquitinating activity was unable to restore tumorigenesis in these cells. These results indicate that UCH-L1 activity supports DAF-7/TGF-ß signaling and suggest that UCH-L1's deubiquitination activity is a potential therapeutic target for managing lung cancer.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Carcinogênese/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Ubiquitina Tiolesterase/metabolismo , Animais , Caenorhabditis elegans , Transformação Celular Neoplásica , Enzimas Desubiquitinantes , Larva/metabolismo , Pulmão/metabolismo , Transdução de Sinais/genética , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Ubiquitina Tiolesterase/fisiologia , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA