RESUMO
Supramolecular materials provide a pathway for achieving precise, highly ordered structures while exhibiting remarkable response to external stimuli, a characteristic not commonly found in covalently bonded materials. The design of self-assembled materials, where properties could be predicted/design from chemical nature of the individual building blocks, hinges upon our ability to relate macroscopic properties to individual building blocks - a feat which has thus far remained elusive. Here, a design approach is demonstrated to chemically engineer the thermal expansion coefficient of 2D supramolecular networks by over an order of magnitude (\boldmath 120 to \boldmath 1000 × 10-6 K-1). This systematic study provides a clear pathway on how to carefully design the thermal expansion coefficient of a 2D molecular assembly. Specifically, a linear relation has been identified between the length of decorating alkyl chains and the thermal expansion coefficient. Counter-intuitively, the shorter the chains the larger is the thermal expansion coefficient. This precise control over thermo-mechanical properties marks a significant leap forward in the de-novo design of advanced 2D materials. The possibility to chemically engineer their thermo-mechanical properties holds promise for innovations in sensors, actuators, and responsive materials across diverse fields.
RESUMO
The transition from single to multiple atomic slips, theoretically expected and important in atomic-scale friction, has never been demonstrated experimentally as a function of velocity. Here we show by high-resolution friction force microscopy on monolayer MoS_{2}/Au(111) that multiple slips leave a unique footprint-a frictional velocity weakening. Specifically, in a wide velocity interval from 10 to 100 nm/s, friction surprisingly decreases. Model simulations show a similar nonmonotonic behavior at velocities in quantitative agreement with experiment. Results suggest a velocity-corrugation phase diagram, whose validity is proposed more generally.
RESUMO
This works describes a new step into the assembly of molecular textiles by the use of covalent templating. To establish a well-founded base and to tackle pre-mature obstacles, expected during the fabrication of the desired 2D-material, we opted to investigate the in-solution synthesis of molecular patches e. g. cut-outs of a textile. A bi-functional cross-shaped monomer was designed, synthesized and was in-detail characterized by means of 1H-NMR and chiro-optical spectroscopy. In addition, x-ray structure crystallography was used to assess the absolute configuration. The monomer was used in an in-solution oligomerization to assemble the molecular patches via imine condensation, which revealed the formation of predominately dimeric patches. The imine-oligomer mixtures were further analyzed by reduction and cleaved to investigate the conditions required post mono-layer assembly. All reaction stages were followed by FT-IR and 1H-NMR analysis. Finally, we address the adsorption of the cross-shaped monomer onto a Au(111) surface, via high vacuum electrospray deposition. The subsequent annealing of the interface induced the on-surface imine condensation reaction, leading to unidimensional oligomers co-adsorbed with clusters of cyclic-dimers. Nc-AFM analysis revealed the tridimensional molecular structures, and together with electrospray deposition technique showed to be a promising pathway to investigate potential monomer candidates.
RESUMO
Friction control and technological advancement are intimately intertwined. Concomitantly, two-dimensional materials occupy a unique position for realizing quasi-frictionless contacts. However, the question arises of how to tune superlubric sliding. Drawing inspiration from twistronics, we propose to control superlubricity via moiré patterning. Friction force microscopy and molecular dynamics simulations unequivocally demonstrate a transition from a superlubric to dissipative sliding regime for different twist angles of graphene moirés on a Pt(111) surface triggered by the normal force. This follows from a novel mechanism at superlattice level where, beyond a critical load, moiré tiles are manipulated in a highly dissipative shear process connected to the twist angle. Importantly, the atomic detail of the dissipation associated with the moiré tile manipulationâi.e., enduring forced registry beyond a critical normal loadâallows the bridging of disparate sliding regimes in a reversible manner, thus paving the road for a subtly intrinsic control of superlubricity.
RESUMO
Friction force microscopy experiments on moiré superstructures of graphene-coated platinum surfaces demonstrate that in addition to atomic stick-slip dynamics, a new dominant energy dissipation route emerges. The underlying mechanism, revealed by atomistic molecular dynamics simulations, is related to moiré ridge elastic deformations and subsequent relaxation due to the action of the pushing tip. The measured frictional velocity dependence displays two distinct regimes: (i) at low velocities, the friction force is small and nearly constant; and (ii) above some threshold, friction increases logarithmically with velocity. The threshold velocity, separating the two frictional regimes, decreases with increasing normal load and moiré superstructure period. Based on the measurements and simulation results, a phenomenological model is derived, allowing us to calculate friction under a wide range of room temperature experimental conditions (sliding velocities of 1-104 nm/s and a broad range of normal loads) and providing excellent agreement with experimental observations.
RESUMO
Structurally defined graphene nanoribbons (GNRs) have emerged as promising candidates for nanoelectronic devices. Low band gap (<1â eV) GNRs are particularly important when considering the Schottky barrier in device performance. Here, we demonstrate the first solution synthesis of 8-AGNRs through a carefully designed arylated polynaphthalene precursor. The efficiency of the oxidative cyclodehydrogenation of the tailor-made polymer precursor into 8-AGNRs was validated by FT-IR, Raman, and UV/Vis-near-infrared (NIR) absorption spectroscopy, and further supported by the synthesis of naphtho[1,2,3,4-ghi]perylene derivatives (1 and 2) as subunits of 8-AGNR, with a width of 0.86â nm as suggested by the X-ray single crystal analysis. Low-temperature scanning tunneling microscopy (STM) and solid-state NMR analyses provided further structural support for 8-AGNR. The resulting 8-AGNR exhibited a remarkable NIR absorption extending up to â¼2400â nm, corresponding to an optical band gap as low as â¼0.52â eV. Moreover, optical-pump TeraHertz-probe spectroscopy revealed charge-carrier mobility in the dc limit of â¼270â cm2 â V-1 s-1 for the 8-AGNR.
RESUMO
A trifunctional, partially fluorinated anthracene-substituted triptycene monomer was spread at an air/water interface into a monolayer, which was transformed into a long-range-ordered 2D polymer by irradiation with a standard UV lamp. The polymer was analyzed by Brewster angle microscopy, scanning tunneling microscopy measurements, and non-contact atomic force microscopy, which confirmed the generation of a network structure with lattice parameters that are virtually identical to a structural model network based on X-ray diffractometry of a closely related 2D polymer. The nc-AFM images highlight the long-range order over areas of at least 300×300â nm2 . As required for a 2D polymer, the pore sizes are monodisperse, except for the regions where the network is somewhat stretched because it spans over protrusions. Together with a previous report on the nature of the cross-links in this network, the structural information provided herein leaves no doubt that a 2D polymer has been synthesized under ambient conditions at an air/water interface.
RESUMO
Templating insulating surfaces at the nanoscale is an interesting prospect for applications that involve the adsorption of molecules or nanoparticles where electronic decoupling of the adsorbed species from the substrate is needed. In this study, we present a method to structure alkali halide surfaces at the nanoscale using a combination of low temperature plasma exposure and annealing, and characterize the surfaces by atomic force microscopy. We find that nanostructurating can be controlled by the duration of the exposure, the atomic mass of the plasma gas and the subsequent step-by-step annealing process. In contrast to previous studies with electron or high energy (few keV) ion irradiation, our approach of employing moderate particle energy (10-15 eV Ar+ or He+ ions) results in fine nanostructuring at length scales of nanometers and even single atom vacancies.
RESUMO
Functionalized materials consisting of inorganic substrates with organic adsorbates play an increasing role in emerging technologies like molecular electronics or hybrid photovoltaics. For such applications, the adsorption geometry of the molecules under operating conditions, e.g., ambient temperature, is crucial because it influences the electronic properties of the interface, which in turn determine the device performance. So far detailed experimental characterization of adsorbates at room temperature has mainly been done using a combination of complementary methods like photoelectron spectroscopy together with scanning tunneling microscopy. However, this approach is limited to ensembles of adsorbates. In this paper, we show that the characterization of individual molecules at room temperature, comprising the determination of the adsorption configuration and the electrostatic interaction with the surface, can be achieved experimentally by atomic force microscopy (AFM) and Kelvin probe force microscopy (KPFM). We demonstrate this by identifying two different adsorption configurations of isolated copper(ii) meso-tetra (4-carboxyphenyl) porphyrin (Cu-TCPP) on rutile TiO2 (110) in ultra-high vacuum. The local contact potential difference measured by KPFM indicates an interfacial dipole due to electron transfer from the Cu-TCPP to the TiO2. The experimental results are verified by state-of-the-art first principles calculations. We note that the improvement of the AFM resolution, achieved in this work, is crucial for such accurate calculations. Therefore, high resolution AFM at room temperature is promising for significantly promoting the understanding of molecular adsorption.
RESUMO
Molecular heterostructures are formed from meso-tetraphenyl porphyrins-Zn(II) (ZnTPP) and Cu(II)-phthalocyanines (CuPc) on the rutile TiO2(011) surface. We demonstrate that ZnTPP molecules form a quasi-ordered wetting layer with flat-lying molecules, which provides the support for growth of islands comprised of upright CuPc molecules. The incorporation of the ZnTPP layer and the growth of heterostructures increase the stability of the system and allow for room temperature scanning tunneling microscopy (STM) measurements, which is contrasted with unstable STM probing of only CuPc species on TiO2. We demonstrate that within the CuPc layer the molecules arrange in two phases and we identify molecular dimers as basic building blocks of the dominant structural phase.
RESUMO
Against conventional wisdom, corrugated grain boundaries in polycrystalline graphene, grown on Pt(111) surfaces, are shown to exhibit negative friction coefficients and non-monotonic velocity dependence. Using combined experimental, simulation, and modeling efforts, the underlying energy dissipation mechanism is found to be dominated by dynamic buckling of grain boundary dislocation protrusions. The revealed mechanism is expected to appear in a wide range of polycrystalline two-dimensional material interfaces, thus supporting the design of large-scale dry superlubric contacts.
RESUMO
Solution-synthesized graphene nanoribbons (GNRs) facilitate various interesting structures and functionalities, like nonplanarity and thermolabile functional groups, that are not or not easily accessible by on-surface synthesis. Here, we show the successful high-vacuum electrospray deposition (HVESD) of well-elongated solution-synthesized GNRs on surfaces maintained in ultrahigh vacuum. We compare three distinct GNRs, a twisted nonplanar fjord-edged GNR, a methoxy-functionalized "cove"-type (or also called gulf) GNR, and a longer "cove"-type GNR both equipped with alkyl chains on Au(111). Nc-AFM measurements at room temperature with submolecular imaging combined with Raman spectroscopy allow us to characterize individual GNRs and confirm their chemical integrity. The fjord-GNR and methoxy-GNR are additionally deposited on nonmetallic HOPG and SiO2, and fjord-GNR is deposited on a KBr(001) surface, facilitating the study of GNRs on substrates, as of now not accessible by on-surface synthesis.
RESUMO
Dendritic polyphenylenes (PPs) can serve as precursors of nanographenes (NGs) if their structures represent 2D projections without overlapping benzene rings. Here, we report the synthesis of two giant dendritic PPs fulfilling this criteria with 366 and 546 carbon atoms by applying a "layer-by-layer" extension strategy. Although our initial attempts on their cyclodehydrogenation toward the corresponding NGs in solution were unsuccessful, we achieved their deposition on metal substrates under ultrahigh vacuum through the electrospray technique. Scanning probe microscopy imaging provides valuable information on the possible thermally induced partial planarization of such giant dendritic PPs on a metal surface.
RESUMO
The intercalation of graphene is an effective approach to modify the electronic properties of two-dimensional heterostructures for attractive phenomena and applications. In this work, we characterize the growth and surface properties of ionic KBr layers altered by graphene using ultra-high vacuum atomic force microscopy at room temperature. We observed a strong rippling of the KBr islands on Ir(111), which is induced by a specific layer reconstruction but disappears when graphene is introduced in between. The latter causes a consistent change in both the work function and the frictional forces measured by Kelvin probe force microscopy and frictional force microscopy, respectively. Systematic density functional theory calculations of the different systems show that the change in work function is induced by the formation of a surface dipole moment while the friction force is dominated by adhesion forces.
RESUMO
Maintaining clean conditions for samples during all steps of preparation and investigation is important for scanning probe studies at the atomic or molecular level. For large or fragile organic molecules, where sublimation cannot be used, high-vacuum electrospray deposition is a good alternative. However, because this method requires the introduction into vacuum of the molecules from solution, clean conditions are more difficult to be maintained. Additionally, because the presence of solvent on the surface cannot be fully eliminated, one has to take care of its possible influence. Here, we compare the high-vacuum electrospray deposition method to thermal evaporation for the preparation of C60 on different surfaces and compare, for sub-monolayer coverages, the influence of the deposition method on the formation of molecular assemblies. Whereas the island location is the main difference for metal surfaces, we observe for alkali halide and metal oxide substrates that the high-vacuum electrospray method can yield single isolated molecules accompanied by surface modifications.
RESUMO
A novel reconstruction of a two-dimensional layer of KBr on an Ir(111) surface is observed by high-resolution noncontact atomic force microscopy and verified by density functional theory (DFT). The observed KBr structure is oriented along the main directions of the Ir(111) surface, but forms a characteristic double-line pattern. Comprehensive calculations by DFT, taking into account the observed periodicities, resulted in a new low-energy reconstruction. However, it is fully relaxed into a common cubic structure when a monolayer of graphene is located between substrate and KBr. By using Kelvin probe force microscopy, the work functions of the reconstructed and the cubic configuration of KBr were measured and indicate, in accordance with the DFT calculations, a difference of nearly 900 meV. The difference is due to the strong interaction and local charge displacement of the K+/Br- ions and the Ir(111) surface, which are reduced by the decoupling effect of graphene, thus yielding different electrical and mechanical properties of the top KBr layer.
RESUMO
Thermal expansion, the response in shape, area or volume of a solid with heat, is usually large in molecular materials compared to their inorganic counterparts. Resulting from the intrinsic molecule flexibility, conformational changes or variable intermolecular interactions, the exact interplay between these mechanisms is however poorly understood down to the molecular level. Here, we investigate the structural variations of a two-dimensional supramolecular network on Au(111) consisting of shape persistent polyphenylene molecules equipped with peripheral dodecyl chains. By comparing high-resolution scanning probe microscopy and molecular dynamics simulations obtained at 5 and 300 K, we determine the thermal expansion coefficient of the assembly of 980 ± 110 × 10-6 K-1, twice larger than other molecular systems hitherto reported in the literature, and two orders of magnitude larger than conventional materials. This giant positive expansion originates from the increased mobility of the dodecyl chains with temperature that determine the intermolecular interactions and the network spacing.
RESUMO
Cryo-electron microscopy can determine the structure of biological matter in vitrified liquids. However, structure alone is insufficient to understand the function of native and engineered biomolecules. So far, their mechanical properties have mainly been probed at room temperature using tens of pico-newton forces with a resolution limited by thermal fluctuations. Here we combine force spectroscopy and computer simulations in cryogenic conditions to quantify adhesion and intra-molecular properties of spray-deposited single-strand DNA oligomers on Au(111). Sub-nanometer resolution images reveal folding conformations confirmed by simulations. Lifting shows a decay of the measured stiffness with sharp dips every 0.2-0.3 nm associated with the sequential peeling and detachment of single nucleotides. A stiffness of 30-35 N m-1 per stretched repeat unit is deduced in the nano-newton range. This combined study suggests how to better control cryo-force spectroscopy of adsorbed heterogeneous (bio)polymer and to potentially enable single-base recognition in DNA strands only few nanometers long.
Assuntos
Microscopia Crioeletrônica/métodos , DNA de Cadeia Simples/ultraestrutura , Ouro/química , Microscopia de Força Atômica , Conformação MolecularRESUMO
Properties of metal oxides, such as optical absorption, can be influenced through the sensitization with molecular species that absorb visible light. Molecular/solid interfaces of this kind are particularly suited for the development and design of emerging hybrid technologies such as dye-sensitized solar cells. A key optimization parameter for such devices is the choice of the compounds in order to control the direction and the intensity of charge transfer across the interface. Here, the deposition of two different molecular dyes, porphyrin and coumarin, as single-layered islands on a NiO(001) single crystal surface have been studied by means of non-contact atomic force microscopy at room temperature. Comparison of both island types reveals different adsorption and packing of each dye, as well as an opposite charge-transfer direction, which has been quantified by Kelvin probe force microscopy measurements.
RESUMO
The catalytic growth on transition metal surfaces provides a clean and controllable route to obtain defect-free, monocrystalline graphene. However, graphene's optical and electronic properties are diminished by the interaction with the metal substrate. One way to overcome this obstacle is the intercalation of atoms and molecules decoupling the graphene and restoring its electronic structure. We applied noncontact atomic force microscopy to study the structural and electric properties of graphene on clean Cu(111) and after the adsorption of KBr or NaCl. By means of Kelvin probe force microscopy, a change in graphene's work function has been observed after the deposition of KBr, indicating a changed graphene-substrate interaction. Further measurements of single-electron charging events as well as X-ray photoelectron spectroscopy confirmed an electronic decoupling of the graphene islands by KBr intercalation. The results have been compared with density functional theory calculations, supporting our experimental findings.