Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Inorg Chem ; 60(23): 17593-17607, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34767343

RESUMO

In this work, we have synthesized a series of novel C,N-cyclometalated 2H-indazole-ruthenium(II) and -iridium(III) complexes with varying substituents (H, CH3, isopropyl, and CF3) in the R4 position of the phenyl ring of the 2H-indazole chelating ligand. All of the complexes were characterized by 1H, 13C, high-resolution mass spectrometry, and elemental analysis. The methyl-substituted 2H-indazole-Ir(III) complex was further characterized by single-crystal X-ray analysis. The cytotoxic activity of new ruthenium(II) and iridium(III) compounds has been evaluated in a panel of triple negative breast cancer (TNBC) cell lines (MDA-MB-231 and MDA-MB-468) and colon cancer cell line HCT-116 to investigate their structure-activity relationships. Most of these new complexes have shown appreciable activity, comparable to or significantly better than that of cisplatin in TNBC cell lines. R4 substitution of the phenyl ring of the 2H-indazole ligand with methyl and isopropyl substituents showed increased potency in ruthenium(II) and iridium(III) complexes compared to that of their parent compounds in all cell lines. These novel transition metal-based complexes exhibited high specificity toward cancer cells by inducing alterations in the metabolism and proliferation of cancer cells. In general, iridium complexes are more active than the corresponding ruthenium complexes. The new Ir(III)-2H-indazole complex with an isopropyl substituent induced mitochondrial damage by generating large amounts of reactive oxygen species (ROS), which triggered mitochondrion-mediated apoptosis in TNBC cell line MDA-MB-468. Moreover, this complex also induced G2/M phase cell cycle arrest and inhibited cellular migration of TNBC cells. Our findings reveal the key roles of the novel C-N-cyclometalated 2H-indazole-Ir(III) complex to specifically induce toxicity in cancer cell lines through contributing effects of ROS-induced mitochondrial disruption along with chromosomal and mitochondrial DNA target inhibition.


Assuntos
Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Indazóis/farmacologia , Irídio/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Indazóis/química , Irídio/química , Estrutura Molecular , Teoria Quântica , Neoplasias de Mama Triplo Negativas/patologia
2.
Artigo em Inglês | MEDLINE | ID: mdl-32071059

RESUMO

We report a systematic, cellular phenotype-based antimalarial screening of the Medicines for Malaria Venture Pathogen Box collection, which facilitated the identification of specific blockers of late-stage intraerythrocytic development of Plasmodium falciparum First, from standard growth inhibition assays, we identified 173 molecules with antimalarial activity (50% effective concentration [EC50] ≤ 10 µM), which included 62 additional molecules over previously known antimalarial candidates from the Pathogen Box. We identified 90 molecules with EC50 of ≤1 µM, which had significant effect on the ring-trophozoite transition, while 9 molecules inhibited the trophozoite-schizont transition and 21 molecules inhibited the schizont-ring transition (with ≥50% parasites failing to proceed to the next stage) at 1 µM. We therefore rescreened all 173 molecules and validated hits in microscopy to prioritize 12 hits as selective blockers of the schizont-ring transition. Seven of these molecules inhibited the calcium ionophore-induced egress of Toxoplasma gondii, a related apicomplexan parasite, suggesting that the inhibitors may be acting via a conserved mechanism which could be further exploited for target identification studies. We demonstrate that two molecules, MMV020670 and MMV026356, identified as schizont inhibitors in our screens, induce the fragmentation of DNA in merozoites, thereby impairing their ability to egress and invade. Further mechanistic studies would facilitate the therapeutic exploitation of these molecules as broadly active inhibitors targeting late-stage development and egress of apicomplexan parasites relevant to human health.


Assuntos
Antimaláricos/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/crescimento & desenvolvimento , Fragmentação do DNA/efeitos dos fármacos , Humanos , Merozoítos/efeitos dos fármacos , Testes de Sensibilidade Parasitária , Esquizontes/efeitos dos fármacos , Trofozoítos/efeitos dos fármacos
3.
ChemMedChem ; 18(9): e202200709, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36751095

RESUMO

Herein we report the synthesis and evaluation of peptide-histidinal conjugated drug scaffolds, which have the potential to target the hemoglobin-degrading proteases falcipain-2/3 from the human malaria parasite. Scaffolds with various substitutions were tested for antimalarial activity, and compounds 8 g, 8 h, and 15 exhibited EC50 values of ∼0.018 µM, ∼0.069 µM, and ∼0.02 µM, respectively. Structure-based docking studies on falcipain-2/3 proteases (PDB:2GHU and PDB:3BWK) revealed that compounds 8 g, 8 h, and 15 interact strongly with binding sites of falcipain-2/3 in a substrate-like manner. In silico ADME studies revealed that the molecules of interest showed no or minimal violations of drug-likeness parameters. Further, phenotypic assays revealed that compound 8 g and its biotinylated version inhibit hemoglobin degradation in the parasite food vacuole. The identification of falcipain-2/3 targeting potent inhibitors of the malaria parasite can serve as a starting point for the development of lead compounds as future antimalarial drug candidates.


Assuntos
Antimaláricos , Malária , Humanos , Antimaláricos/química , Plasmodium falciparum , Malária/tratamento farmacológico , Hemoglobinas/metabolismo
4.
Acta Parasitol ; 68(4): 832-841, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37831282

RESUMO

BACKGROUND: As per estimates by WHO in 2021 almost half of the world's population was at risk of malaria and > 0.6 million deaths were attributed to malaria. Therefore, the present study was aimed to explore the antimalarial activity of extracts derived from the leaves of the plant Anacardium occidentale L., which has been used traditionally for the treatment of malaria. Different extracts of A. occidentale leaves were prepared and tested for their inhibitory activity against recombinant P. falciparum transketolase (rPfTK) enzyme, in vitro. Further, growth inhibitory activity against cultivated blood stage P. falciparum parasites (3D7 strain), was studied using SYBR Green fluorescence-based in vitro assays. Acute toxicity of the hydro alcoholic extracts of leaves of A. occidentale (HELA) at different concentrations was evaluated on mice and Zebra fish embryos. HELA showed 75.45 ± 0.35% inhibitory activity against the recombinant PfTk and 99.31 ± 0.08% growth inhibition against intra-erythrocytic stages of P. falciparum at the maximum concentration (50 µg/ml) with IC50 of 4.17 ± 0.22 µg/ml. The toxicity test results showed that the heartbeat, somite formation, tail detachment and hatching of embryos were not affected when Zebra fish embryos were treated with 0.1 to 10 µg/ml of the extract. However, at higher concentrations of the extract, at 48 h (1000 µg/ml) and 96 h (100 µg/ml and 1000 µg/ml, respectively) there was no heartbeat in the fish embryos. In the acute oral toxicity tests performed on mice, the extract showed no toxicity up to 300 mg/kg body weight in mice. CONCLUSION: The hydro-alcoholic extract of leaves of A. occidentale L. showed potent antimalarial activity against blood stage P. falciparum. Based on the observed inhibitory activity on the transketolase enzyme of P. falciparum it is likely that this enzyme is the target for the development of bioactive molecules present in the plant extracts. The promising anti-malarial activity of purified compounds from leaves of A. occidentale needs to be further explored for development of new anti-malarial therapy.


Assuntos
Anacardium , Antimaláricos , Malária Falciparum , Malária , Animais , Camundongos , Antimaláricos/toxicidade , Plasmodium falciparum , Transcetolase/uso terapêutico , Peixe-Zebra , Malária/tratamento farmacológico , Malária/parasitologia , Malária Falciparum/tratamento farmacológico , Extratos Vegetais/farmacologia
5.
RSC Adv ; 10(70): 43085-43091, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-35514935

RESUMO

A new nigericin analogue that has been chemically modified was synthesized through a fluorination process from the parent nigericin, produced from a novel Streptomyces strain DASNCL-29. Fermentation strategies were designed for the optimised production of nigericin molecule and subjected for purification and structural analysis. The fermentation process resulted in the highest yield of nigericin (33% (w/w)). Initially, nigericin produced from the strain DASNCL-29 demonstrated polymorphism in its crystal structure, i.e., monoclinic and orthorhombic crystal lattices when crystallised with methanol and hexane, respectively. Furthermore, nigericin produced has been subjected to chemical modification by fluorination to enhance its efficacy. Two fluorinated analogues revealed that they possess a very potent antibacterial activity against Gram positive and Gram negative bacteria. To date, the nigericin molecule has not been reported for any reaction against Gram-negative bacteria, which are increasingly becoming resistant to antibiotics. For the first time, fluorinated analogues of nigericin have shown promising activity. In vitro cytotoxicity analysis of fluorinated analogues demonstrated tenfold lesser toxicity than the parent nigericin. This is the first type of study where the fluorinated analogues of nigericin showed very encouraging activity against Gram-negative organisms; moreover, they can be used as a candidate for treating many serious infections.

6.
Sci Rep ; 8(1): 18076, 2018 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-30584241

RESUMO

Glucose is an essential nutrient for Plasmodium falciparum and robust glycolytic activity is indicative of viable parasites. Using NMR spectroscopy, we show that P. falciparum infected erythrocytes consume ~20 times more glucose, and trophozoites metabolize ~6 times more glucose than ring stage parasites. The glycolytic activity, and hence parasite viability, can be measured within a period of 2 h to 5 h, using this method. This facilitates antimalarial bioactivity screening on ring and trophozoite stage parasites, exclusively. We demonstrate this using potent and mechanistically distinct antimalarial compounds such as chloroquine, atovaquone, cladosporin, DDD107498 and artemisinin. Our findings indicate that ring stage parasites are inherently more tolerant to antimalarial inhibitors, a feature which may facilitate emergence of drug resistance. Thus, there is a need to discover novel antimalarial compounds, which are potent and fast acting against ring stage parasites. The NMR method reported here can facilitate the identification of such molecules.


Assuntos
Antimaláricos/farmacologia , Glicólise , Espectroscopia de Ressonância Magnética/métodos , Plasmodium falciparum/efeitos dos fármacos , Células Cultivadas , Humanos , Estágios do Ciclo de Vida , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/metabolismo
7.
J Genomics ; 5: 124-127, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29109799

RESUMO

Bacillus aquimaris strain SAMM, a biosurfactant producing moderately halophilic marine bacterium was isolated from Indian Arabian coastline sea water. The strain was found to tolerate up to 2.7 M NaCl indicating osmotic stress sustainable physiological systems. We report here the draft genome sequence of B. aquimaris SAMM, as a candidate bacterium for bioactive surfactant producer. The whole genome sequence with 161 scaffolds, 4,414,932 bp and 44.8% of G+C content for SAMM was obtained using Illumina MiSeq sequencing technology. Annotation was added by the PGAP and RAST prokaryotic genome annotation service and shown 4,247 coding sequences, 123 RNAs genes, classified in 453 subsystems. Several genes encoding enzymatic activities against the high molecular weight polysaccharides, osmotic stress response and siderophore synthesis of potential biotechnological importance were identified in the genome.

8.
Stand Genomic Sci ; 12: 15, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28163824

RESUMO

Probiotic Lactobacillus species offer various health benefits, thus have been employed in treatment and prevention of various diseases. Due to the differences in the isolation source and the site of action, most of the lactobacilli tested in-vitro for probiotics properties fail to extend similar effects in-vivo. Consequently, the search of autochthonous, efficacious and probably population specific probiotics is a high priority in the probiotics research. In this regards, whole genome sequencing of as many Lactobacillus as possible will help to deepen our understanding of biology and their health effects. Here, we provide the genomic insights of two coherent oxalic acid tolerant Lactobacillus species (E2C2 and E2C5) isolated from two different healthy human gut flora. These two isolates were found to have higher tolerance towards oxalic acid (300 mM sodium oxalate). The draft genome of strain E2C2 consists of 3,603,563 bp with 3289 protein-coding genes, 94 RNA genes, and 43.99% GC content, while E2C5 contained 3,615,168 bp, 3293 coding genes (93.4% of the total genes), 95 RNA genes and 43.97% GC content. Based on 16S rRNA gene sequence analysis followed by in silico DNA-DNA hybridization studies, both the strains were identified as Lactobacillus plantarum belonging to family Lactobacillaceae within the phylum Firmicutes. Both the strains were genomically identical, sharing 99.99% CDS that showed 112 SNPs. Both the strains also exhibited deconjugation activity for the bile salts while genome analysis revealed that the L. plantarum strains E2C2 and E2C5 also have the ability to produce vitamins, biotin, alpha- and beta- glucosidase suggesting potential probiotic activities of the isolates. The description presented here is based on the draft genomes of strains E2C2 and E2C5 which are submitted to GenBank under the accession numbers LSST00000000.1 and LTCD00000000.1, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA