Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Theor Biol Med Model ; 15(1): 21, 2018 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-30348205

RESUMO

BACKGROUND: Many biological soft tissues are hydrated porous hyperelastic materials, which consist of a complex solid skeleton with fine voids and fluid filling these voids. Mechanical interactions between the solid and the fluid in hydrated porous tissues have been analyzed by finite element methods (FEMs) in which the mixture theory was introduced in various ways. Although most of the tissues are surrounded by deformable membranes that control transmembrane flows, the boundaries of the tissues have been treated as rigid and/or freely permeable in these studies. The purpose of this study was to develop a method for the analysis of hydrated porous hyperelastic tissues surrounded by deformable membranes that control transmembrane flows. RESULTS: For this, we developed a new nonlinear finite element formulation of the mixture theory, where the nodal unknowns were the pore water pressure and solid displacement. This method allows the control of the fluid flow rate across the membrane using Neumann boundary condition. Using the method, we conducted a compression test of the hydrated porous hyperelastic tissue, which was surrounded by a flaccid impermeable membrane, and a part of the top surface of this tissue was pushed by a platen. The simulation results showed a stress relaxation phenomenon, resulting from the interaction between the elastic deformation of the tissue, pore water pressure gradient, and the movement of fluid. The results also showed that the fluid trapped by the impermeable membrane led to the swelling of the tissue around the platen. CONCLUSIONS: These facts suggest that our new method can be effectively used for the analysis of a large deformation of hydrated porous hyperelastic material surrounded by a deformable membrane that controls transmembrane flow, and further investigations may allow more realistic analyses of the biological soft tissues, such as brain edema, brain trauma, the flow of blood and lymph in capillaries and pitting edema.


Assuntos
Análise de Elementos Finitos , Especificidade de Órgãos , Reologia , Algoritmos , Fenômenos Biomecânicos , Força Compressiva , Membranas , Modelos Biológicos , Porosidade , Fatores de Tempo , Água/química
2.
Bioengineering (Basel) ; 11(7)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39061784

RESUMO

In hydrated soft biological tissues experiencing edema, which is typically associated with various disorders, excessive fluid accumulates and is encapsulated by impermeable membranes. In certain cases of edema, an indentation induced by pressure persists even after the load is removed. The depth and duration of this indentation are used to assess the treatment response. This study presents a mixture theory-based approach to analyzing the edematous condition. The finite element analysis formulation was grounded in mixture theory, with the solid displacement, pore water pressure, and fluid relative velocity as the unknown variables. To ensure tangential fluid flow at the surface of tissues with complex shapes, we transformed the coordinates of the fluid velocity vector at each time step and node, allowing for the incorporation of the transmembrane component of fluid flow as a Dirichlet boundary condition. Using this proposed method, we successfully replicated the distinct behavior of pitting edema, which is characterized by a prolonged recovery time from indentation. Consequently, the proposed method offers valuable insights into the finite element analysis of the edematous condition in biological tissues.

3.
Sci Rep ; 13(1): 7069, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37127727

RESUMO

Slow rocking chairs can easily put people to sleep, while violent shaking, such as during earthquakes, may lead to rapid awakening. However, the influence of external body vibrations on arousal remains unclear. Herein, a computational model of a locus coeruleus (LC)-norepinephrine (NE) system and cardio-respiratory system were used to show that respiratory entrainment of the LC modulates arousal levels, which is an adaptation to avoid physical risks from external vibration. External vibrations of sinusoidal waves with different frequencies ranging from 0.1 to 20 [Hz] were applied to the LC based on the results of previous studies. We found that respiratory entrainment of the LC decreased the breathing rate (BR) and heart rate (HR) to maintain the HR within its normal range. Furthermore, 1:1 phase locking enhanced arousal level while phase-amplitude coupling decreased it for larger vibration stimuli. These findings suggest that respiratory entrainment of the LC might automatically modulate cardio-respiratory system homeostasis and arousal levels for performance readiness (fight/flight or freeze) to avoid physical risks from larger external vibrations.


Assuntos
Locus Cerúleo , Vibração , Humanos , Locus Cerúleo/fisiologia , Nível de Alerta/fisiologia , Sono , Norepinefrina
4.
J Cardiovasc Electrophysiol ; 19(7): 730-9, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18284504

RESUMO

INTRODUCTION: To investigate the mechanisms underlying the increased prevalence of ventricular fibrillation (VF) in the mechanically compromised heart, we developed a fully coupled electromechanical model of the human ventricular myocardium. METHODS AND RESULTS: The model formulated the biophysics of specific ionic currents, excitation-contraction coupling, anisotropic nonlinear deformation of the myocardium, and mechanoelectric feedback (MEF) through stretch-activated channels. Our model suggests that sustained stretches shorten the action potential duration (APD) and flatten the electrical restitution curve, whereas stretches applied at the wavefront prolong the APD. Using this model, we examined the effects of mechanical stresses on the dynamics of spiral reentry. The strain distribution during spiral reentry was complex, and a high strain-gradient region was located in the core of the spiral wave. The wavefront around the core was highly stretched, even at lower pressures, resulting in prolongation of the APD and extension of the refractory area in the wavetail. As the left ventricular pressure increased, the stretched area became wider and the refractory area was further extended. The extended refractory area in the wavetail facilitated the wave breakup and meandering of tips through interactions between the wavefront and wavetail. CONCLUSIONS: This simulation study indicates that mechanical loading promotes meandering and wave breaks of spiral reentry through MEF. Mechanical loading under pathological conditions may contribute to the maintenance of VF through these mechanisms.


Assuntos
Ventrículos do Coração/fisiopatologia , Modelos Cardiovasculares , Fibrilação Ventricular/fisiopatologia , Animais , Fenômenos Biomecânicos , Simulação por Computador , Módulo de Elasticidade , Eletrônica , Humanos , Resistência ao Cisalhamento , Estresse Mecânico
5.
Traffic Inj Prev ; 15(1): 48-55, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24279966

RESUMO

OBJECTIVE: In vehicle frontal impacts, vehicle acceleration has a large effect on occupant loadings and injury risks. In this research, an optimal vehicle crash pulse was determined systematically to reduce injury measures of rear seat occupants by using mathematical simulations. METHOD: The vehicle crash pulse was optimized based on a vehicle deceleration-deformation diagram under the conditions that the initial velocity and the maximum vehicle deformation were constant. Initially, a spring-mass model was used to understand the fundamental parameters for optimization. In order to investigate the optimization under a more realistic situation, the vehicle crash pulse was also optimized using a multibody model of a Hybrid III dummy seated in the rear seat for the objective functions of chest acceleration and chest deflection. A sled test using a Hybrid III dummy was carried out to confirm the simulation results. Finally, the optimal crash pulses determined from the multibody simulation were applied to a human finite element (FE) model. RESULTS: The optimized crash pulse to minimize the occupant deceleration had a concave shape: a high deceleration in the initial phase, low in the middle phase, and high again in the final phase. This crash pulse shape depended on the occupant restraint stiffness. The optimized crash pulse determined from the multibody simulation was comparable to that from the spring-mass model. From the sled test, it was demonstrated that the optimized crash pulse was effective for the reduction of chest acceleration. The crash pulse was also optimized for the objective function of chest deflection. The optimized crash pulse in the final phase was lower than that obtained for the minimization of chest acceleration. In the FE analysis of the human FE model, the optimized pulse for the objective function of the Hybrid III chest deflection was effective in reducing rib fracture risks. CONCLUSIONS: The optimized crash pulse has a concave shape and is dependent on the occupant restraint stiffness and maximum vehicle deformation. The shapes of the optimized crash pulse in the final phase were different for the objective functions of chest acceleration and chest deflection due to the inertial forces of the head and upper extremities. From the human FE model analysis it was found that the optimized crash pulse for the Hybrid III chest deflection can substantially reduce the risk of rib cage fractures. Supplemental materials are available for this article. Go to the publisher's online edition of Traffic Injury Prevention to view the supplemental file.


Assuntos
Acidentes de Trânsito/estatística & dados numéricos , Desaceleração , Fraturas das Costelas/prevenção & controle , Tórax/fisiologia , Fenômenos Biomecânicos , Simulação por Computador , Análise de Elementos Finitos , Humanos , Manequins , Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA