RESUMO
Familial adult myoclonus epilepsy (FAME) is a genetic condition characterized by the occurrence of cortical tremor, myoclonus, and epilepsy. To date, there is neither a curative nor a preventive treatment for FAME. Clinical management is essentially symptomatic and based on antiseizure medications (ASMs). The choice of the correct therapeutic option is limited to ASMs that have both an antiseizure and an antimyoclonic effect, such as valproate, levetiracetam, benzodiazepines, and perampanel. However, these medications control seizures well while having a limited effect on myoclonus and cortical tremor. In addition, many ASMs, including sodium channel blockers and gabapentin, are contraindicated in this condition. The ideal therapeutic option would be a precision treatment able to revert the genetic defect underlying it. Nevertheless, this does not seem to be an option that will be available soon.
Assuntos
Epilepsias Mioclônicas , Epilepsia , Mioclonia , Adulto , Humanos , Mioclonia/tratamento farmacológico , Tremor/tratamento farmacológico , Epilepsia/tratamento farmacológico , Epilepsias Mioclônicas/tratamento farmacológico , Epilepsias Mioclônicas/genética , Ácido Valproico/uso terapêutico , Anticonvulsivantes/uso terapêuticoRESUMO
Epilepsy presurgical investigation may include focal intracortical single-pulse electrical stimulations with depth electrodes, which induce cortico-cortical evoked potentials at distant sites because of white matter connectivity. Cortico-cortical evoked potentials provide a unique window on functional brain networks because they contain sufficient information to infer dynamical properties of large-scale brain connectivity, such as preferred directionality and propagation latencies. Here, we developed a biologically informed modelling approach to estimate the neural physiological parameters of brain functional networks from the cortico-cortical evoked potentials recorded in a large multicentric database. Specifically, we considered each cortico-cortical evoked potential as the output of a transient stimulus entering the stimulated region, which directly propagated to the recording region. Both regions were modelled as coupled neural mass models, the parameters of which were estimated from the first cortico-cortical evoked potential component, occurring before 80 ms, using dynamic causal modelling and Bayesian model inversion. This methodology was applied to the data of 780 patients with epilepsy from the F-TRACT database, providing a total of 34 354 bipolar stimulations and 774 445 cortico-cortical evoked potentials. The cortical mapping of the local excitatory and inhibitory synaptic time constants and of the axonal conduction delays between cortical regions was obtained at the population level using anatomy-based averaging procedures, based on the Lausanne2008 and the HCP-MMP1 parcellation schemes, containing 130 and 360 parcels, respectively. To rule out brain maturation effects, a separate analysis was performed for older (>15 years) and younger patients (<15 years). In the group of older subjects, we found that the cortico-cortical axonal conduction delays between parcels were globally short (median = 10.2 ms) and only 16% were larger than 20 ms. This was associated to a median velocity of 3.9 m/s. Although a general lengthening of these delays with the distance between the stimulating and recording contacts was observed across the cortex, some regions were less affected by this rule, such as the insula for which almost all efferent and afferent connections were faster than 10 ms. Synaptic time constants were found to be shorter in the sensorimotor, medial occipital and latero-temporal regions, than in other cortical areas. Finally, we found that axonal conduction delays were significantly larger in the group of subjects younger than 15 years, which corroborates that brain maturation increases the speed of brain dynamics. To our knowledge, this study is the first to provide a local estimation of axonal conduction delays and synaptic time constants across the whole human cortex in vivo, based on intracerebral electrophysiological recordings.
Assuntos
Epilepsia , Potenciais Evocados , Teorema de Bayes , Encéfalo , Mapeamento Encefálico/métodos , Estimulação Elétrica/métodos , Potenciais Evocados/fisiologia , HumanosRESUMO
The International League Against Epilepsy (ILAE) Task Force on Nosology and Definitions proposes a classification and definition of epilepsy syndromes in the neonate and infant with seizure onset up to 2 years of age. The incidence of epilepsy is high in this age group and epilepsy is frequently associated with significant comorbidities and mortality. The licensing of syndrome specific antiseizure medications following randomized controlled trials and the development of precision, gene-related therapies are two of the drivers defining the electroclinical phenotypes of syndromes with onset in infancy. The principal aim of this proposal, consistent with the 2017 ILAE Classification of the Epilepsies, is to support epilepsy diagnosis and emphasize the importance of classifying epilepsy in an individual both by syndrome and etiology. For each syndrome, we report epidemiology, clinical course, seizure types, electroencephalography (EEG), neuroimaging, genetics, and differential diagnosis. Syndromes are separated into self-limited syndromes, where there is likely to be spontaneous remission and developmental and epileptic encephalopathies, diseases where there is developmental impairment related to both the underlying etiology independent of epileptiform activity and the epileptic encephalopathy. The emerging class of etiology-specific epilepsy syndromes, where there is a specific etiology for the epilepsy that is associated with a clearly defined, relatively uniform, and distinct clinical phenotype in most affected individuals as well as consistent EEG, neuroimaging, and/or genetic correlates, is presented. The number of etiology-defined syndromes will continue to increase, and these newly described syndromes will in time be incorporated into this classification. The tables summarize mandatory features, cautionary alerts, and exclusionary features for the common syndromes. Guidance is given on the criteria for syndrome diagnosis in resource-limited regions where laboratory confirmation, including EEG, MRI, and genetic testing, might not be available.
Assuntos
Epilepsia Generalizada , Epilepsia , Síndromes Epilépticas , Eletroencefalografia , Epilepsia/diagnóstico , Epilepsia/genética , Humanos , Lactente , Recém-Nascido , Convulsões/diagnósticoRESUMO
Epilepsy syndromes have been recognized for >50 years, as distinct electroclinical phenotypes with therapeutic and prognostic implications. Nonetheless, no formally accepted International League Against Epilepsy (ILAE) classification of epilepsy syndromes has existed. The ILAE Task Force on Nosology and Definitions was established to reach consensus regarding which entities fulfilled criteria for an epilepsy syndrome and to provide definitions for each syndrome. We defined an epilepsy syndrome as "a characteristic cluster of clinical and electroencephalographic features, often supported by specific etiological findings (structural, genetic, metabolic, immune, and infectious)." The diagnosis of a syndrome in an individual with epilepsy frequently carries prognostic and treatment implications. Syndromes often have age-dependent presentations and a range of specific comorbidities. This paper describes the guiding principles and process for syndrome identification in both children and adults, and the template of clinical data included for each syndrome. We divided syndromes into typical age at onset, and further characterized them based on seizure and epilepsy types and association with developmental and/or epileptic encephalopathy or progressive neurological deterioration. Definitions for each specific syndrome are contained within the corresponding position papers.
Assuntos
Epilepsia Generalizada , Epilepsia , Síndromes Epilépticas , Eletroencefalografia/efeitos adversos , Epilepsia/diagnóstico , Epilepsia/etiologia , Epilepsia Generalizada/complicações , Síndromes Epilépticas/complicações , Humanos , Convulsões/diagnósticoRESUMO
In 2017, the International League Against Epilepsy (ILAE) Classification of Epilepsies described the "genetic generalized epilepsies" (GGEs), which contained the "idiopathic generalized epilepsies" (IGEs). The goal of this paper is to delineate the four syndromes comprising the IGEs, namely childhood absence epilepsy, juvenile absence epilepsy, juvenile myoclonic epilepsy, and epilepsy with generalized tonic-clonic seizures alone. We provide updated diagnostic criteria for these IGE syndromes determined by the expert consensus opinion of the ILAE's Task Force on Nosology and Definitions (2017-2021) and international external experts outside our Task Force. We incorporate current knowledge from recent advances in genetic, imaging, and electroencephalographic studies, together with current terminology and classification of seizures and epilepsies. Patients that do not fulfill criteria for one of these syndromes, but that have one, or a combination, of the following generalized seizure types: absence, myoclonic, tonic-clonic and myoclonic-tonic-clonic seizures, with 2.5-5.5 Hz generalized spike-wave should be classified as having GGE. Recognizing these four IGE syndromes as a special grouping among the GGEs is helpful, as they carry prognostic and therapeutic implications.
Assuntos
Epilepsia Tipo Ausência , Epilepsia Generalizada , Criança , Eletroencefalografia , Epilepsia Generalizada/diagnóstico , Epilepsia Generalizada/genética , Humanos , Imunoglobulina E , Convulsões , SíndromeRESUMO
The 2017 International League Against Epilepsy classification has defined a three-tier system with epilepsy syndrome identification at the third level. Although a syndrome cannot be determined in all children with epilepsy, identification of a specific syndrome provides guidance on management and prognosis. In this paper, we describe the childhood onset epilepsy syndromes, most of which have both mandatory seizure type(s) and interictal electroencephalographic (EEG) features. Based on the 2017 Classification of Seizures and Epilepsies, some syndrome names have been updated using terms directly describing the seizure semiology. Epilepsy syndromes beginning in childhood have been divided into three categories: (1) self-limited focal epilepsies, comprising four syndromes: self-limited epilepsy with centrotemporal spikes, self-limited epilepsy with autonomic seizures, childhood occipital visual epilepsy, and photosensitive occipital lobe epilepsy; (2) generalized epilepsies, comprising three syndromes: childhood absence epilepsy, epilepsy with myoclonic absence, and epilepsy with eyelid myoclonia; and (3) developmental and/or epileptic encephalopathies, comprising five syndromes: epilepsy with myoclonic-atonic seizures, Lennox-Gastaut syndrome, developmental and/or epileptic encephalopathy with spike-and-wave activation in sleep, hemiconvulsion-hemiplegia-epilepsy syndrome, and febrile infection-related epilepsy syndrome. We define each, highlighting the mandatory seizure(s), EEG features, phenotypic variations, and findings from key investigations.
Assuntos
Epilepsias Mioclônicas , Epilepsias Parciais , Epilepsia Tipo Ausência , Criança , Eletroencefalografia , Humanos , ConvulsõesRESUMO
The goal of this paper is to provide updated diagnostic criteria for the epilepsy syndromes that have a variable age of onset, based on expert consensus of the International League Against Epilepsy Nosology and Definitions Taskforce (2017-2021). We use language consistent with current accepted epilepsy and seizure classifications and incorporate knowledge from advances in genetics, electroencephalography, and imaging. Our aim in delineating the epilepsy syndromes that present at a variable age is to aid diagnosis and to guide investigations for etiology and treatments for these patients.
Assuntos
Epilepsia , Síndromes Epilépticas , Comitês Consultivos , Eletroencefalografia/efeitos adversos , Epilepsia/complicações , Epilepsia/diagnóstico , Síndromes Epilépticas/complicações , Humanos , Convulsões/diagnósticoRESUMO
Variants in KCNT1, encoding a sodium-gated potassium channel (subfamily T member 1), have been associated with a spectrum of epilepsies and neurodevelopmental disorders. These range from familial autosomal dominant or sporadic sleep-related hypermotor epilepsy to epilepsy of infancy with migrating focal seizures (EIMFS) and include developmental and epileptic encephalopathies. This study aims to provide a comprehensive overview of the phenotypic and genotypic spectrum of KCNT1 mutation-related epileptic disorders in 248 individuals, including 66 previously unpublished and 182 published cases, the largest cohort reported so far. Four phenotypic groups emerged from our analysis: (i) EIMFS (152 individuals, 33 previously unpublished); (ii) developmental and epileptic encephalopathies other than EIMFS (non-EIMFS developmental and epileptic encephalopathies) (37 individuals, 17 unpublished); (iii) autosomal dominant or sporadic sleep-related hypermotor epilepsy (53 patients, 14 unpublished); and (iv) other phenotypes (six individuals, two unpublished). In our cohort of 66 new cases, the most common phenotypic features were: (i) in EIMFS, heterogeneity of seizure types, including epileptic spasms, epilepsy improvement over time, no epilepsy-related deaths; (ii) in non-EIMFS developmental and epileptic encephalopathies, possible onset with West syndrome, occurrence of atypical absences, possible evolution to developmental and epileptic encephalopathies with sleep-related hypermotor epilepsy features; one case of sudden unexplained death in epilepsy; (iii) in autosomal dominant or sporadic sleep-related hypermotor epilepsy, we observed a high prevalence of drug-resistance, although seizure frequency improved with age in some individuals, appearance of cognitive regression after seizure onset in all patients, no reported severe psychiatric disorders, although behavioural/psychiatric comorbidities were reported in â¼50% of the patients, sudden unexplained death in epilepsy in one individual; and (iv) other phenotypes in individuals with mutation of KCNT1 included temporal lobe epilepsy, and epilepsy with tonic-clonic seizures and cognitive regression. Genotypic analysis of the whole cohort of 248 individuals showed only missense mutations and one inframe deletion in KCNT1. Although the KCNT1 mutations in affected individuals were seen to be distributed among the different domains of the KCNT1 protein, genotype-phenotype considerations showed many of the autosomal dominant or sporadic sleep-related hypermotor epilepsy-associated mutations to be clustered around the RCK2 domain in the C terminus, distal to the NADP domain. Mutations associated with EIMFS/non-EIMFS developmental and epileptic encephalopathies did not show a particular pattern of distribution in the KCNT1 protein. Recurrent KCNT1 mutations were seen to be associated with both severe and less severe phenotypes. Our study further defines and broadens the phenotypic and genotypic spectrums of KCNT1-related epileptic conditions and emphasizes the increasingly important role of this gene in the pathogenesis of early onset developmental and epileptic encephalopathies as well as of focal epilepsies, namely autosomal dominant or sporadic sleep-related hypermotor epilepsy.
Assuntos
Epilepsia/genética , Proteínas do Tecido Nervoso/genética , Canais de Potássio Ativados por Sódio/genética , Adolescente , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Genótipo , Humanos , Lactente , Masculino , Mutação , Fenótipo , Adulto JovemRESUMO
Mania is characterized by affective and cognitive alterations, with heightened external and self-awareness that are opposite to the alteration of awareness during epileptic seizures. Electrical stimulations carried out routinely during stereotactic intracerebral EEG (SEEG) recordings for presurgical evaluation of epilepsy may represent a unique opportunity to study the pathophysiology of such complex emotional-behavioral phenomenon, particularly difficult to reproduce in experimental setting. We investigated SEEG signals-based functional connectivity between different brain regions involved in emotions and in consciousness processing during a manic state induced by electrical stimulation in a patient with drug-resistant focal epilepsy. The stimulation inducing manic state and an asymptomatic stimulation of the same site, as well as a seizure with alteration of awareness (AOA) were analyzed. Functional connectivity analysis was performed by measuring interdependencies (nonlinear regression analysis based on the h2 coefficient) between broadband SEEG signals and within typical sub-bands, before and after stimulation, or before and during the seizure with AOA, respectively. Stimulation of the right lateral prefrontal cortex induced a manic state lasting several hours. Its onset was associated with significant increase of broadband-signal functional coupling between the right hemispheric limbic nodes, the temporal pole and the claustrum, whereas significant decorrelation between the right lateral prefrontal and the anterior cingulate cortex was observed in theta-band. In contrast, ictal alteration of awareness was associated with increased broadband and sub-bands synchronization within and between the internal and external awareness networks, including the anterior and middle cingulate, the mesial and lateral prefrontal, the inferior parietal and the temporopolar cortex. Our data suggest the existence of network- and frequency-specific functional connectivity patterns during manic state. A transient desynchronization of theta activity between the external and internal awareness network hubs is likely to increase awareness, with potential therapeutic effect.
Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia , Humanos , Mania , Emoções/fisiologia , Convulsões , Estimulação Elétrica , Estado de ConsciênciaRESUMO
OBJECTIVE: To assess the relation between coffee consumption and seizure frequency in patients with drug-resistant focal epilepsy. METHODS: Cross-sectional analysis of data collected in the SAVE study, which included patients with drug-resistant focal epilepsy during long-term EEG monitoring. Patients in whom both coffee consumption and data about seizure frequency, including focal to bilateral tonic-clonic seizures (FBTCS), were available were selected. Coffee consumption was collected using a standardized self-report questionnaire and classified into four groups: none, rare (from less than 1 cup/week to up 3 cups/week), moderate (from 4 cups/week to 3 cups/day), and high (more than 4 cups/day). RESULTS: Six hundred and nineteen patients were included. There was no relation between coffee consumption and total seizure frequency (pâ¯=â¯0.902). In contrast, the number of FBTCS reported over the past year was significantly associated with usual coffee consumption (pâ¯=â¯0.029). Specifically, number of FBCTS in patients who reported moderate coffee consumption was lower than in others. In comparison with patients with moderate coffee consumption, the odds ratio (95%CI) for reporting at least 1 FBTCS per year was 1.6 (1.03-2.49) in patients who never take coffee, 1.62 (1.02-2.57) in those with rare consumption and 2.05 (1.24-3.4) in those with high consumption. Multiple ordinal logistic regression showed a trend toward an association between coffee consumption and number of FBTCS (pâ¯=â¯0.08). CONCLUSIONS AND RELEVANCE: Our data suggest that effect of coffee consumption on seizures might depend on dose with potential benefits on FBTCS frequency at moderate doses. These results will have to be confirmed by prospective studies.
Assuntos
Café , Epilepsias Parciais , Anticonvulsivantes/uso terapêutico , Estudos Transversais , Epilepsias Parciais/tratamento farmacológico , Epilepsias Parciais/epidemiologia , Humanos , Estudos Prospectivos , Convulsões/tratamento farmacológico , Convulsões/epidemiologiaRESUMO
Alterations of the N-methyl-d-aspartate receptor (NMDAR) subunit GluN2A, encoded by GRIN2A, have been associated with a spectrum of neurodevelopmental disorders with prominent speech-related features, and epilepsy. We performed a comprehensive assessment of phenotypes with a standardized questionnaire in 92 previously unreported individuals with GRIN2A-related disorders. Applying the criteria of the American College of Medical Genetics and Genomics to all published variants yielded 156 additional cases with pathogenic or likely pathogenic variants in GRIN2A, resulting in a total of 248 individuals. The phenotypic spectrum ranged from normal or near-normal development with mild epilepsy and speech delay/apraxia to severe developmental and epileptic encephalopathy, often within the epilepsy-aphasia spectrum. We found that pathogenic missense variants in transmembrane and linker domains (misTMD+Linker) were associated with severe developmental phenotypes, whereas missense variants within amino terminal or ligand-binding domains (misATD+LBD) and null variants led to less severe developmental phenotypes, which we confirmed in a discovery (P = 10-6) as well as validation cohort (P = 0.0003). Other phenotypes such as MRI abnormalities and epilepsy types were also significantly different between the two groups. Notably, this was paralleled by electrophysiology data, where misTMD+Linker predominantly led to NMDAR gain-of-function, while misATD+LBD exclusively caused NMDAR loss-of-function. With respect to null variants, we show that Grin2a+/- cortical rat neurons also had reduced NMDAR function and there was no evidence of previously postulated compensatory overexpression of GluN2B. We demonstrate that null variants and misATD+LBD of GRIN2A do not only share the same clinical spectrum (i.e. milder phenotypes), but also result in similar electrophysiological consequences (loss-of-function) opposing those of misTMD+Linker (severe phenotypes; predominantly gain-of-function). This new pathomechanistic model may ultimately help in predicting phenotype severity as well as eligibility for potential precision medicine approaches in GRIN2A-related disorders.
Assuntos
Epilepsia/genética , Transtornos do Neurodesenvolvimento/genética , Receptores de N-Metil-D-Aspartato/genética , Adolescente , Adulto , Idoso , Animais , Células Cultivadas , Córtex Cerebelar/metabolismo , Criança , Pré-Escolar , Epilepsia/fisiopatologia , Feminino , Genótipo , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Mutação , Transtornos do Neurodesenvolvimento/fisiopatologia , Fenótipo , Ratos , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de N-Metil-D-Aspartato/fisiologia , Adulto JovemRESUMO
Epilepsy of infancy with migrating focal seizures was first described in 1995. Fifteen years later, KCNT1 gene mutations were identified as the major disease-causing gene of this disease. Currently, the data on epilepsy of infancy with migrating focal seizures associated with KCNT1 mutations are heterogeneous and many questions remain unanswered including the prognosis and the long-term outcome especially regarding epilepsy, neurological and developmental status and the presence of microcephaly. The aim of this study was to assess data from patients with epilepsy in infancy with migrating focal seizures with KCNT1 mutations to refine the phenotype spectrum and the outcome. We used mind maps based on medical reports of children followed in the network of the French reference centre for rare epilepsies and we developed family surveys to assess the long-term outcome. Seventeen patients were included [age: median (25th-75th percentile): 4 (2-15) years, sex ratio: 1.4, length of follow-up: 4 (2-15) years]. Seventy-one per cent started at 6 (1-52) days with sporadic motor seizures (n = 12), increasing up to a stormy phase with long lasting migrating seizures at 57 (30-89) days. The others entered this stormy phase directly at 1 (1-23) day. Ten patients entered a consecutive phase at 1.3 (1-2.8) years where seizures persisted at least daily (n = 8), but presented different semiology: brief and hypertonic with a nocturnal (n = 6) and clustered (n = 6) aspects. Suppression interictal patterns were identified on the EEG in 71% of patients (n = 12) sometimes from the first EEG (n = 6). Three patients received quinidine without reported efficacy. Long-term outcome was poor with neurological sequelae and active epilepsy except for one patient who had an early and long-lasting seizure-free period. Extracerebral symptoms probably linked with KCNT1 mutation were present, including arteriovenous fistula, dilated cardiomyopathy and precocious puberty. Eight patients (47%) had died at 3 (1.5-15.4) years including three from suspected sudden unexpected death in epilepsy. Refining the electro-clinical characteristics and the temporal sequence of epilepsy in infancy with migrating focal seizures should help diagnosis of this epilepsy. A better knowledge of the outcome allows one to advise families and to define the appropriate follow-up and therapies. Extracerebral involvement should be investigated, in particular the cardiac system, as it may be involved in the high prevalence of sudden unexpected death in epilepsy in these cases.
Assuntos
Epilepsias Parciais/genética , Mutação , Proteínas do Tecido Nervoso/genética , Canais de Potássio Ativados por Sódio/genética , Morte Súbita Inesperada na Epilepsia , Adolescente , Mapeamento Encefálico/métodos , Criança , Pré-Escolar , Eletroencefalografia/métodos , Epilepsias Parciais/metabolismo , Feminino , Humanos , Estudos Longitudinais , Masculino , Proteínas do Tecido Nervoso/metabolismo , Fenótipo , Canais de Potássio/genética , Canais de Potássio/metabolismo , Canais de Potássio Ativados por Sódio/metabolismoRESUMO
Variants in the gene SCN1A are a common genetic cause for a wide range of epilepsy phenotypes ranging from febrile seizures to Dravet syndrome. Focal onset seizures and structural lesions can be present in these patients and the question arises whether epilepsy surgery should be considered. We report eight patients (mean age 13y 11mo [SD 8y 1mo], range 3-26y; four females, four males) with SCN1A variants, who underwent epilepsy surgery. Outcomes were variable and seemed to be directly related to the patient's anatomo-electroclinical epilepsy phenotype. Patients with Dravet syndrome had unfavourable outcomes, whilst patients with focal epilepsy, proven to arise from a single structural lesion, had good results. We conclude that the value of epilepsy surgery in patients with an SCN1A variant rests on two issues: understanding whether the variant is pathogenic and the patient's anatomo-electroclinical phenotype. Careful evaluation of epilepsy phenotype integrated with understanding the significance of genetic variants is essential in determining a patient's suitability for epilepsy surgery. Patients with focal onset epilepsy may benefit from epilepsy surgery, whereas those with Dravet syndrome do not. WHAT THIS PAPER ADDS: Patients should not automatically be excluded from epilepsy surgery evaluation if they carry an SCN1A variant. Patients with focal epilepsy may benefit from epilepsy surgery; those with Dravet syndrome do not.
Assuntos
Epilepsias Mioclônicas/cirurgia , Epilepsias Parciais/cirurgia , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Adolescente , Adulto , Criança , Pré-Escolar , Epilepsias Mioclônicas/genética , Epilepsias Mioclônicas/patologia , Epilepsias Mioclônicas/fisiopatologia , Epilepsias Parciais/genética , Epilepsias Parciais/patologia , Epilepsias Parciais/fisiopatologia , Feminino , Humanos , Masculino , Avaliação de Resultados em Cuidados de Saúde , Adulto JovemRESUMO
Body awareness is the result of sensory integration in the posterior parietal cortex; however, other brain structures are part of this process. Our goal is to determine how the cingulate cortex is involved in the representation of our body. We retrospectively selected patients with drug-resistant epilepsy, explored by stereo-electroencephalography, that had the cingulate cortex sampled outside the epileptogenic zone. The clinical effects of high-frequency electrical stimulation were reviewed and only those sites that elicited changes related to body perception were included. Connectivity of the cingulate cortex and other cortical structures was assessed using the h2 coefficient, following a nonlinear regression analysis of the broadband EEG signal. Poststimulation changes in connectivity were compared between two sets of stimulations eliciting or not eliciting symptoms related to body awareness (interest and control groups). We included 17 stimulations from 12 patients that reported different types of body perception changes such as sensation of being pushed toward right/left/up, one limb becoming heavier/lighter, illusory sensation of movement, sensation of pressure, sensation of floating or detachment of one hemi-body. High-frequency stimulation in the cingulate cortex (1 anterior, 15 middle, 1 posterior part) elicits body perception changes, associated with a decreased connectivity of the dominant posterior insula and increased coupling between other structures, located particularly in the nondominant hemisphere.
Assuntos
Conscientização/fisiologia , Córtex Cerebral/fisiologia , Conectoma , Eletrocorticografia , Giro do Cíngulo/fisiologia , Rede Nervosa/fisiologia , Propriocepção/fisiologia , Adulto , Córtex Cerebral/diagnóstico por imagem , Epilepsia Resistente a Medicamentos/cirurgia , Estimulação Elétrica , Humanos , Cinestesia/fisiologia , Rede Nervosa/diagnóstico por imagemRESUMO
PURPOSE: To define the phenotypic and mutational spectrum of epilepsies related to DEPDC5, NPRL2 and NPRL3 genes encoding the GATOR1 complex, a negative regulator of the mTORC1 pathway METHODS: We analyzed clinical and genetic data of 73 novel probands (familial and sporadic) with epilepsy-related variants in GATOR1-encoding genes and proposed new guidelines for clinical interpretation of GATOR1 variants. RESULTS: The GATOR1 seizure phenotype consisted mostly in focal seizures (e.g., hypermotor or frontal lobe seizures in 50%), with a mean age at onset of 4.4 years, often sleep-related and drug-resistant (54%), and associated with focal cortical dysplasia (20%). Infantile spasms were reported in 10% of the probands. Sudden unexpected death in epilepsy (SUDEP) occurred in 10% of the families. Novel classification framework of all 140 epilepsy-related GATOR1 variants (including the variants of this study) revealed that 68% are loss-of-function pathogenic, 14% are likely pathogenic, 15% are variants of uncertain significance and 3% are likely benign. CONCLUSION: Our data emphasize the increasingly important role of GATOR1 genes in the pathogenesis of focal epilepsies (>180 probands to date). The GATOR1 phenotypic spectrum ranges from sporadic early-onset epilepsies with cognitive impairment comorbidities to familial focal epilepsies, and SUDEP.
Assuntos
Epilepsia/genética , Proteínas Ativadoras de GTPase/genética , Proteínas Repressoras/genética , Proteínas Supressoras de Tumor/genética , Adolescente , Síndrome de Brugada/genética , Síndrome de Brugada/mortalidade , Síndrome de Brugada/fisiopatologia , Criança , Pré-Escolar , Variações do Número de Cópias de DNA/genética , Epilepsia/complicações , Epilepsia/epidemiologia , Epilepsia/fisiopatologia , Feminino , Predisposição Genética para Doença , Humanos , Mutação INDEL/genética , Lactente , Recém-Nascido , Mutação com Perda de Função/genética , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Complexos Multiproteicos/genética , Linhagem , Convulsões/complicações , Convulsões/epidemiologia , Convulsões/genética , Convulsões/fisiopatologia , Transdução de Sinais/genéticaRESUMO
The original version of this Article contained an error in the author list where the corresponding author Stéphanie Baulac was repeated twice. This has now been corrected in the HTML, the PDF was correct at the time of publication.
RESUMO
The original version of this article contained an error in the spelling of the author Erik H. Niks, which was incorrectly given as Erik Niks. This has now been corrected in both the PDF and HTML versions of the article.
RESUMO
OBJECTIVE: We aimed to characterize epilepsy of infancy with migrating focal seizures (EIMFS), a rare, severe early onset developmental epilepsy related to KCNT1 mutation, and to define specific electroencephalography (EEG) markers using EEG quantitative analysis. The ultimate goal would be to improve early diagnosis and to better understand seizure onset and propagation of EIMFS as compared to other early onset developmental epilepsy. METHODS: EEG of 7 EIMFS patients with KCNT1 mutations (115 seizures) and 17 patients with other early onset epilepsies (30 seizures) was included in this study. After detection of seizure onset and termination, spatiotemporal characteristics were quantified. Seizure propagation dynamics were analyzed using chronograms and phase coherence. RESULTS: In patients with EIMFS, seizures started and were localized predominantly in temporal and occipital areas, and evolved with a stable frequency (4-10 Hz). Inter- and intrahemispheric migrations were present in 60% of EIMFS seizures with high intraindividual reproducibility of temporospatial dynamics. Interhemispheric migrating seizures spread in 71% from temporal or occipital channels to the homologous contralateral ones, whereas intrahemispheric seizures involved mainly frontotemporal, temporal, and occipital channels. Causality links were present between ictal activities detected under different channels during migrating seizures. Finally, time delay index (based on delays between the different ictal onsets) and phase correlation index (based on coherence of ictal activities) allowed discrimination of EIMFS and non-EIMFS seizures with a specificity of 91.2% and a sensitivity of 84.4%. SIGNIFICANCE: We showed that the migrating pattern in EIMFS is not a random process, as suggested previously, and that it is a particular propagation pattern that follows the classical propagation pathways. It is notable that this study reveals specific EEG markers (time delay and phase correlation) accessible to visual evaluation, which will improve EIMFS diagnosis.
Assuntos
Eletroencefalografia/métodos , Epilepsias Parciais/diagnóstico , Epilepsias Parciais/genética , Proteínas do Tecido Nervoso/genética , Canais de Potássio Ativados por Sódio/genética , Epilepsias Parciais/fisiopatologia , Feminino , Humanos , Lactente , Recém-Nascido , MasculinoRESUMO
In patients with pharmaco-resistant focal epilepsies investigated with intracranial electroencephalography (iEEG), direct electrical stimulations of a cortical region induce cortico-cortical evoked potentials (CCEP) in distant cerebral cortex, which properties can be used to infer large scale brain connectivity. In 2013, we proposed a new probabilistic functional tractography methodology to study human brain connectivity. We have now been revisiting this method in the F-TRACT project (f-tract.eu) by developing a large multicenter CCEP database of several thousand stimulation runs performed in several hundred patients, and associated processing tools to create a probabilistic atlas of human cortico-cortical connections. Here, we wish to present a snapshot of the methods and data of F-TRACT using a pool of 213 epilepsy patients, all studied by stereo-encephalography with intracerebral depth electrodes. The CCEPs were processed using an automated pipeline with the following consecutive steps: detection of each stimulation run from stimulation artifacts in raw intracranial EEG (iEEG) files, bad channels detection with a machine learning approach, model-based stimulation artifact correction, robust averaging over stimulation pulses. Effective connectivity between the stimulated and recording areas is then inferred from the properties of the first CCEP component, i.e. onset and peak latency, amplitude, duration and integral of the significant part. Finally, group statistics of CCEP features are implemented for each brain parcel explored by iEEG electrodes. The localization (coordinates, white/gray matter relative positioning) of electrode contacts were obtained from imaging data (anatomical MRI or CT scans before and after electrodes implantation). The iEEG contacts were repositioned in different brain parcellations from the segmentation of patients' anatomical MRI or from templates in the MNI coordinate system. The F-TRACT database using the first pool of 213 patients provided connectivity probability values for 95% of possible intrahemispheric and 56% of interhemispheric connections and CCEP features for 78% of intrahemisheric and 14% of interhemispheric connections. In this report, we show some examples of anatomo-functional connectivity matrices, and associated directional maps. We also indicate how CCEP features, especially latencies, are related to spatial distances, and allow estimating the velocity distribution of neuronal signals at a large scale. Finally, we describe the impact on the estimated connectivity of the stimulation charge and of the contact localization according to the white or gray matter. The most relevant maps for the scientific community are available for download on f-tract. eu (David et al., 2017) and will be regularly updated during the following months with the addition of more data in the F-TRACT database. This will provide an unprecedented knowledge on the dynamical properties of large fiber tracts in human.
Assuntos
Córtex Cerebral/diagnóstico por imagem , Conectoma/métodos , Eletrocorticografia/métodos , Epilepsia/diagnóstico por imagem , Potenciais Evocados/fisiologia , Adolescente , Adulto , Atlas como Assunto , Córtex Cerebral/fisiopatologia , Criança , Pré-Escolar , Bases de Dados Factuais , Epilepsia/fisiopatologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Vias Neurais/diagnóstico por imagem , Adulto JovemRESUMO
OBJECTIVE: Within a complex systems biology perspective, we wished to assess whether hippocampi with established neuropathological features have distinct metabolome. Apparently normal hippocampi with no signs of sclerosis (noHS), were compared to hippocampal sclerosis (HS) type 1 (HS1) and/or type 2 (HS2). Hippocampus metabolome from patients with epilepsy-associated neuroepithelial tumors (EANTs), namely, gangliogliomas (GGs) and dysembryoplastic neuroepithelial tumors (DNTs), was also compared to noHS epileptiform tissue. METHODS: All patients underwent standardized temporal lobectomy. We applied 1 H high-resolution magic angle spinning nuclear magnetic resonance (HRMAS NMR) spectroscopy to 48 resected human hippocampi. NMR spectra allowed quantification of 21 metabolites. Data were analyzed using multivariate analysis based on mutual information. RESULTS: Clear distinct metabolomic profiles were observed between all studied groups. Sixteen and 18 expected metabolite levels out of 21 were significantly different for HS1 and HS2, respectively, when compared to noHS. Distinct concentration variations for glutamine, glutamate, and N-acetylaspartate (NAA) were observed between HS1 and HS2. Hippocampi from GG and DNT patients showed 7 and 11 significant differences in metabolite concentrations when compared to the same group, respectively. GG and DNT had a clear distinct metabolomic profile, notably regarding choline compounds, glutamine, glutamate, aspartate, and taurine. Lactate and acetate underwent similar variations in both groups. SIGNIFICANCE: HRMAS NMR metabolomic analysis was able to disentangle metabolic profiles between HS, noHS, and epileptic hippocampi associated with EANT. HRMAS NMR metabolomic analysis may contribute to a better identification of abnormal biochemical processes and neuropathogenic combinations underlying mesial temporal lobe epilepsy.