Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Cell ; 185(11): 1860-1874.e12, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35568033

RESUMO

Two mycobacteriophages were administered intravenously to a male with treatment-refractory Mycobacterium abscessus pulmonary infection and severe cystic fibrosis lung disease. The phages were engineered to enhance their capacity to lyse M. abscessus and were selected specifically as the most effective against the subject's bacterial isolate. In the setting of compassionate use, the evidence of phage-induced lysis was observed using molecular and metabolic assays combined with clinical assessments. M. abscessus isolates pre and post-phage treatment demonstrated genetic stability, with a general decline in diversity and no increased resistance to phage or antibiotics. The anti-phage neutralizing antibody titers to one phage increased with time but did not prevent clinical improvement throughout the course of treatment. The subject received lung transplantation on day 379, and systematic culturing of the explanted lung did not detect M. abscessus. This study describes the course and associated markers of a successful phage treatment of M. abscessus in advanced lung disease.


Assuntos
Bacteriófagos , Fibrose Cística , Infecções por Mycobacterium não Tuberculosas , Mycobacterium abscessus , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bacteriófagos/genética , Fibrose Cística/tratamento farmacológico , Humanos , Pulmão , Masculino , Infecções por Mycobacterium não Tuberculosas/terapia , Mycobacterium abscessus/fisiologia
2.
Int J Mol Sci ; 24(13)2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37446240

RESUMO

Mycobacterium abscessus, a species of nontuberculous mycobacteria (NTM), is an opportunistic pathogen that is readily cleared by healthy lungs but can cause pulmonary infections in people with chronic airway diseases. Although knowledge pertaining to molecular mechanisms of host defense against NTM is increasing, macrophage receptors that recognize M. abscessus remain poorly defined. Dectin-1, a C-type lectin receptor identified as a fungal receptor, has been shown to be a pathogen recognition receptor (PRR) for both M. tuberculosis and NTM. To better understand the role of Dectin-1 in host defense against M. abscessus, we tested whether blocking Dectin-1 impaired the uptake of M. abscessus by human macrophages, and we compared M. abscessus pulmonary infection in Dectin-1-deficient and wild-type mice. Blocking antibody for Dectin-1 did not reduce macrophage phagocytosis of M. abscessus, but did reduce the ingestion of the fungal antigen zymosan. Laminarin, a glucan that blocks Dectin-1 and other PRRs, caused decreased phagocytosis of both M. abscessus and zymosan. Dectin-1-/- mice exhibited no defects in the control of M. abscessus infection, and no differences were detected in immune cell populations between wild type and Dectin-1-/- mice. These data demonstrate that murine defense against M. abscessus pulmonary infection, as well as ingestion of M. abscessus by human macrophages, can occur independent of Dectin-1. Thus, additional PRR(s) recognized by laminarin participate in macrophage phagocytosis of M. abscessus.


Assuntos
Infecções por Mycobacterium não Tuberculosas , Mycobacterium abscessus , Humanos , Animais , Camundongos , Zimosan , Macrófagos , Fagocitose , Micobactérias não Tuberculosas , Infecções por Mycobacterium não Tuberculosas/microbiologia
3.
Am J Respir Cell Mol Biol ; 61(1): 42-50, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30742539

RESUMO

Research to understand the contribution of macrophages to nonresolving airway inflammation in cystic fibrosis (CF) and other chronic suppurative airways diseases has been hindered by a lack of methods for isolating and studying these cells. With the development of technologies that can characterize small numbers of cells or individual cells, there is an even greater need for methodologies to isolate rare cells in heterogeneous specimens. Here, we describe a method that overcomes the technical obstacles imposed by sputum debris and apoptotic cells, and allows isolation of pure populations of macrophages from CF sputum. In addition to enhancing our ability to study human CF airway macrophages, this protocol can be adapted to study cells in sputum from other chronic suppurative lung diseases (e.g., chronic obstructive pulmonary disease) and used for isolation of individual cells for single cell analyses.


Assuntos
Separação Celular/métodos , Fibrose Cística/patologia , Citometria de Fluxo/métodos , Pulmão/patologia , Macrófagos/patologia , Escarro/citologia , Adulto , Apoptose , Sobrevivência Celular , Humanos , Neutrófilos/patologia
4.
J Proteome Res ; 18(6): 2601-2612, 2019 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-31060355

RESUMO

Chronic airway infection with P. aeruginosa (PA) is a hallmark of cystic fibrosis (CF) disease. The mechanisms producing PA persistence in CF therapies remain poorly understood. To gain insight on PA physiology in patient airways and better understand how in vivo bacterial functioning differs from in vitro conditions, we investigated the in vivo proteomes of PA in 35 sputum samples from 11 CF patients. We developed a novel bacterial-enrichment method that relies on differential centrifugation and detergent treatment to enrich for bacteria to improve identification of PA proteome with CF sputum samples. Using two nonredundant peptides as a cutoff, a total of 1304 PA proteins were identified directly from CF sputum samples. The in vivo PA proteomes were compared with the proteomes of ex vivo-grown PA populations from the same patient sample. Label-free quantitation and proteome comparison revealed the in vivo up-regulation of siderophore TonB-dependent receptors, remodeling in central carbon metabolism including glyoxylate cycle and lactate utilization, and alginate overproduction. Knowledge of these in vivo proteome differences or others derived using the presented methodology could lead to future treatment strategies aimed at altering PA physiology in vivo to compromise infectivity or improve antibiotic efficacy.


Assuntos
Fibrose Cística/diagnóstico , Proteoma/genética , Infecções por Pseudomonas/diagnóstico , Pseudomonas aeruginosa/isolamento & purificação , Adulto , Antibacterianos/uso terapêutico , Proteínas de Bactérias/genética , Carbono/metabolismo , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Fibrose Cística/microbiologia , Feminino , Glioxilatos/metabolismo , Humanos , Ácido Láctico/metabolismo , Masculino , Proteínas de Membrana/genética , Pessoa de Meia-Idade , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/genética , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/patogenicidade , Escarro/microbiologia
6.
Am J Respir Crit Care Med ; 195(12): 1617-1628, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28222269

RESUMO

RATIONALE: Previous work indicates that ivacaftor improves cystic fibrosis transmembrane conductance regulator (CFTR) activity and lung function in people with cystic fibrosis and G551D-CFTR mutations but does not reduce density of bacteria or markers of inflammation in the airway. These findings raise the possibility that infection and inflammation may progress independently of CFTR activity once cystic fibrosis lung disease is established. OBJECTIVES: To better understand the relationship between CFTR activity, airway microbiology and inflammation, and lung function in subjects with cystic fibrosis and chronic airway infections. METHODS: We studied 12 subjects with G551D-CFTR mutations and chronic airway infections before and after ivacaftor. We measured lung function, sputum bacterial content, and inflammation, and obtained chest computed tomography scans. MEASUREMENTS AND MAIN RESULTS: Ivacaftor produced rapid decreases in sputum Pseudomonas aeruginosa density that began within 48 hours and continued in the first year of treatment. However, no subject eradicated their infecting P. aeruginosa strain, and after the first year P. aeruginosa densities rebounded. Sputum total bacterial concentrations also decreased, but less than P. aeruginosa. Sputum inflammatory measures decreased significantly in the first week of treatment and continued to decline over 2 years. Computed tomography scans obtained before and 1 year after ivacaftor treatment revealed that ivacaftor decreased airway mucous plugging. CONCLUSIONS: Ivacaftor caused marked reductions in sputum P. aeruginosa density and airway inflammation and produced modest improvements in radiographic lung disease in subjects with G551D-CFTR mutations. However, P. aeruginosa airway infection persisted. Thus, measures that control infection may be required to realize the full benefits of CFTR-targeting treatments.


Assuntos
Aminofenóis/uso terapêutico , Regulador de Condutância Transmembrana em Fibrose Cística/efeitos dos fármacos , Fibrose Cística/tratamento farmacológico , Inflamação/prevenção & controle , Quinolonas/uso terapêutico , Infecções Respiratórias/prevenção & controle , Adulto , Agonistas dos Canais de Cloreto/uso terapêutico , Fibrose Cística/diagnóstico por imagem , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Feminino , Humanos , Inflamação/metabolismo , Pulmão/diagnóstico por imagem , Pulmão/metabolismo , Masculino , Infecções Respiratórias/metabolismo , Escarro/efeitos dos fármacos , Escarro/metabolismo , Tomografia Computadorizada por Raios X
7.
Infect Immun ; 85(1)2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27795361

RESUMO

Pseudomonas aeruginosa is an important opportunistic human pathogen that lives in biofilm-like cell aggregates at sites of chronic infection, such as those that occur in the lungs of patients with cystic fibrosis and nonhealing ulcers. During growth in a biofilm, P. aeruginosa dramatically increases the production of filamentous Pf bacteriophage (Pf phage). Previous work indicated that when in vivo Pf phage production was inhibited, P. aeruginosa was less virulent. However, it is not clear how the production of abundant quantities of Pf phage similar to those produced by biofilms under in vitro conditions affects pathogenesis. Here, using a murine pneumonia model, we show that the production of biofilm-relevant amounts of Pf phage prevents the dissemination of P. aeruginosa from the lung. Furthermore, filamentous phage promoted bacterial adhesion to mucin and inhibited bacterial invasion of airway epithelial cultures, suggesting that Pf phage traps P. aeruginosa within the lung. The in vivo production of Pf phage was also associated with reduced lung injury, reduced neutrophil recruitment, and lower cytokine levels. Additionally, when producing Pf phage, P. aeruginosa was less prone to phagocytosis by macrophages than bacteria not producing Pf phage. Collectively, these data suggest that filamentous Pf phage alters the progression of the inflammatory response and promotes phenotypes typically associated with chronic infection.


Assuntos
Inflamação/microbiologia , Inflamação/virologia , Inovirus/crescimento & desenvolvimento , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/virologia , Pseudomonas aeruginosa/virologia , Animais , Biofilmes/crescimento & desenvolvimento , Fibrose Cística/microbiologia , Fibrose Cística/virologia , Pulmão/microbiologia , Pulmão/virologia , Macrófagos/microbiologia , Macrófagos/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fagocitose/fisiologia
9.
Front Cell Infect Microbiol ; 14: 1275940, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38352056

RESUMO

Chronic pulmonary bacterial infections and associated inflammation remain a cause of morbidity and mortality in people with cystic fibrosis (PwCF) despite new modulator therapies. Therapies targeting host factors that dampen detrimental inflammation without suppressing immune responses critical for controlling infections remain limited, while the development of lung infections caused by antimicrobial resistant bacteria is an increasing global problem, and a significant challenge in CF. Pharmacological compounds targeting the mammalian MAPK proteins MEK1 and MEK2, referred to as MEK1/2 inhibitor compounds, have potential combined anti-microbial and anti-inflammatory effects. Here we examined the immunomodulatory properties of MEK1/2 inhibitor compounds PD0325901, trametinib, and CI-1040 on CF innate immune cells. Human CF macrophage and neutrophil phagocytic functions were assessed by quantifying phagocytosis of serum opsonized pHrodo red E. coli, Staphylococcus aureus, and zymosan bioparticles. MEK1/2 inhibitor compounds reduced CF macrophage pro-inflammatory cytokine production without impairing CF macrophage or neutrophil phagocytic abilities. Wild-type C57BL6/J and Cftr tm1kth (F508del homozygous) mice were used to evaluate the in vivo therapeutic potential of PD0325901 compared to vehicle treatment in an intranasal methicillin-resistant Staphylococcus aureus (MRSA) infection with the community-acquired MRSA strain USA300. In both wild-type and CF mice, PD0325901 reduced inflammation associated body mass loss. Wild-type mice treated with PD0325901 had significant reduction in neutrophil-mediated inflammation compared to vehicle treatment groups, with preserved clearance of bacteria in lung, liver, or spleen 1 day after infection in either wild-type or CF mouse models. In summary, this study provides the first data evaluating the therapeutic potential of MEK1/2 inhibitor to modulate CF immune cells and demonstrates that MEK1/2 inhibitors diminish pro-inflammatory responses without impairing host defense mechanisms required for acute pathogen clearance.


Assuntos
Benzamidas , Fibrose Cística , Difenilamina/análogos & derivados , Staphylococcus aureus Resistente à Meticilina , Humanos , Animais , Camundongos , Fibrose Cística/complicações , Fibrose Cística/tratamento farmacológico , Fibrose Cística/microbiologia , Escherichia coli , Macrófagos , Inflamação/complicações , Gravidade do Paciente , Mamíferos
10.
bioRxiv ; 2023 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-36712028

RESUMO

Chronic pulmonary bacterial infections and associated inflammation remain a cause of morbidity and mortality in people with cystic fibrosis (PwCF) despite new modulator therapies. Therapies targeting host factors that dampen detrimental inflammation without suppressing immune responses critical for controlling infections remain limited, while the acquisition of antibiotic resistance bacterial infections is an increasing global problem, and a significant challenge in CF. Pharmacological compounds targeting the mammalian MAPK proteins MEK1 and MEK2, referred to as MEK1/2 inhibitor compounds, have potential combined anti-microbial and anti-inflammatory effects. Here we examined the immunomodulatory properties of MEK1/2 inhibitor compounds PD0325901, trametinib, and CI-1040 on CF innate immune cells. Human CF macrophage and neutrophil phagocytic functions were assessed by quantifying phagocytosis of serum opsonized pHrodo red E. coli , Staphylococcus aureus , and zymosan bioparticles. MEK1/2 inhibitor compounds reduced CF macrophage pro-inflammatory cytokine production without impairing CF macrophage or neutrophil phagocytic abilities. Wild-type C57BL6/J and Cftr tm1kth (F508del homozygous) mice were used to evaluate the in vivo therapeutic potential of PD0325901 compared to vehicle treatment in an intranasal methicillin-resistant Staphylococcus aureus (MRSA) infection with the community-acquired MRSA strain USA300. In both wild-type and CF mice, PD0325901 reduced infection related weight loss compared to vehicle treatment groups but did not impair clearance of bacteria in lung, liver, or spleen 1 day after infection. In summary, this study provides the first data evaluating the therapeutic potential of MEK1/2 inhibitor to modulate CF immune cells, and demonstrates that MEK1/2 inhibitors dampen pro-inflammatory responses without impairing host defense mechanisms mediating pathogen clearance.

11.
Tuberculosis (Edinb) ; 138: 102276, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36417800

RESUMO

Nontuberculous mycobacteria (NTM) are opportunistic pathogens that affect a relatively small but significant portion of the people with cystic fibrosis (CF), and may cause increased morbidity and mortality in this population. Cultures from the airway are the only test currently in clinical use for detecting NTM. Culture techniques used in clinical laboratories are insensitive and poorly suited for population screening or to follow progression of disease or treatment response. The lack of sensitive and quantitative markers of NTM in the airway impedes patient care and clinical trial design, and has limited our understanding of patterns of acquisition, latency and pathogenesis of disease. Culture-independent markers of NTM infection have the potential to overcome many of the limitations of standard NTM cultures, especially the very slow growth, inability to quantitate bacterial burden, and low sensitivity due to required decontamination procedures. A range of markers have been identified in sputum, saliva, breath, blood, urine, as well as radiographic studies. Proposed markers to detect presence of NTM or transition to NTM disease include bacterial cell wall products and DNA, as well as markers of host immune response such as immunoglobulins and the gene expression of circulating leukocytes. In all cases the sensitivity of culture-independent markers is greater than standard cultures; however, most do not discriminate between various NTM species. Thus, each marker may be best suited for a specific clinical application, or combined with other markers and traditional cultures to improve diagnosis and monitoring of treatment response.


Assuntos
Fibrose Cística , Infecções por Mycobacterium não Tuberculosas , Mycobacterium tuberculosis , Humanos , Fibrose Cística/complicações , Fibrose Cística/diagnóstico , Fibrose Cística/epidemiologia , Infecções por Mycobacterium não Tuberculosas/microbiologia , Micobactérias não Tuberculosas , Pulmão
12.
Lancet Respir Med ; 11(10): 916-931, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37699420

RESUMO

Cystic fibrosis is a multiorgan disease caused by impaired function of the cystic fibrosis transmembrane conductance regulator (CFTR). Since the introduction of the CFTR modulator combination elexacaftor-tezacaftor-ivacaftor (ETI), which acts directly on mutant CFTR to enhance its activity, most people with cystic fibrosis (pwCF) have seen pronounced reductions in symptoms, and studies project marked increases in life expectancy for pwCF who are eligible for ETI. However, modulator therapy has not cured cystic fibrosis and the success of CFTR modulators has resulted in immediate questions about the new state of cystic fibrosis disease and clinical challenges in the care of pwCF. In this Series paper, we summarise key questions about cystic fibrosis disease in the era of modulator therapy, highlighting state-of-the-art research and clinical practices, knowledge gaps, new challenges faced by pwCF and the potential for future health-care challenges, and the pressing need for additional therapies to treat the underlying genetic or molecular causes of cystic fibrosis.


Assuntos
Fibrose Cística , Humanos , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Atenção à Saúde , Aminofenóis/uso terapêutico , Benzodioxóis/uso terapêutico , Mutação , Agonistas dos Canais de Cloreto/uso terapêutico
13.
Clin Chest Med ; 43(4): 647-665, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36344072

RESUMO

Highly effective cystic fibrosis (CF) transmembrane conductance regulator (CFTR) modulator therapy (HEMT) corrects the underlying molecular defect causing CF disease. HEMT decreases symptom burden and improves clinical metrics and quality of life for most people with CF (PwCF) and eligible cftr mutations. Improvements in measures of pulmonary health suggest that restoration of function of defective CFTR anion channels by HEMT not only enhances airway mucociliary clearance, but also reduces chronic pulmonary infection and inflammation. This article reviews the evidence for how HEMT influences the dynamic and interdependent processes of infection and inflammation in the CF airway, and what questions remain unanswered.


Assuntos
Fibrose Cística , Quinolonas , Humanos , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/uso terapêutico , Fibrose Cística/tratamento farmacológico , Aminofenóis/uso terapêutico , Qualidade de Vida , Quinolonas/uso terapêutico , Mutação , Inflamação/tratamento farmacológico
14.
Ann Am Thorac Soc ; 19(11): 1818-1826, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35713619

RESUMO

Rationale: The etiology of cystic fibrosis (CF) pulmonary exacerbations (PEx) is likely multifactorial with viral, bacterial, and non-infectious pathways contributing. Objectives: To determine whether viral infection status and CRP (C-reactive protein) can classify subphenotypes of PEx that differ in outcomes and biomarker profiles. Methods: Patients were recruited at time of admission for a PEx. Nasal swabs and sputum samples were collected and processed using the respiratory panel of the FilmArray multiplex polymerase chain reaction (PCR). Serum and plasma biomarkers were measured. PEx were classified using serum CRP and viral PCR: "pauci-inflammatory" if CRP < 5 mg/L, "non-viral with systemic inflammation" if CRP ⩾ 5 mg/L and no viral infection detected by PCR and "viral with systemic inflammation" if CRP ⩾ 5 mg/L and viral infection detected by PCR. Results: Discovery cohort (n = 59) subphenotype frequencies were 1) pauci-inflammatory (37%); 2) non-viral with systemic inflammation (41%); and 3) viral with systemic inflammation (22%). Immunoglobulin G, immunoglobulin M, interleukin-10, interleukin-13, serum calprotectin, and CRP levels differed across phenotypes. Reduction from baseline in forced expiratory volume in 1 second as percent predicted (FEV1pp) at onset of exacerbation differed between non-viral with systemic inflammation and viral with systemic inflammation (-6.73 ± 1.78 vs. -13.5 ± 2.32%; P = 0.025). Non-viral with systemic inflammation PEx had a trend toward longer duration of intravenous antibiotics versus pauci-inflammation (18.1 ± 1.17 vs. 14.8 ± 1.19 days, P = 0.057). There were no differences in percent with lung function recovery to <10% of baseline FEV1pp. Similar results were seen in local and external validation cohorts comparing a pauci-inflammatory to viral/non-viral inflammatory exacerbation phenotypes. Conclusions: Subphenotypes of CF PEx exist with differences in biomarker profile, clinical presentation, and outcomes.


Assuntos
Fibrose Cística , Humanos , Pulmão , Proteína C-Reativa/metabolismo , Antibacterianos/uso terapêutico , Biomarcadores , Inflamação/tratamento farmacológico , Fenótipo , Progressão da Doença
16.
Infect Immun ; 79(7): 2829-38, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21576344

RESUMO

Onset of the adaptive immune response in mice infected with Mycobacterium tuberculosis is accompanied by slowing of bacterial replication and establishment of a chronic infection. Stabilization of bacterial numbers during the chronic phase of infection is dependent on the activity of the gamma interferon (IFN-γ)-inducible nitric oxide synthase (NOS2). Previously, we described a differential signature-tagged mutagenesis screen designed to identify M. tuberculosis "counterimmune" mechanisms and reported the isolation of three mutants in the H37Rv strain background containing transposon insertions in the rv0072, rv0405, and rv2958c genes. These mutants were impaired for replication and virulence in NOS2(-/-) mice but were growth-proficient and virulent in IFN-γ(-/-) mice, suggesting that the disrupted genes were required for bacterial resistance to an IFN-γ-dependent immune mechanism other than NOS2. Here, we report that the attenuation of these strains is attributable to an underlying transposon-independent deficiency in biosynthesis of phthiocerol dimycocerosate (PDIM), a cell wall lipid that is required for full virulence in mice. We performed whole-genome resequencing of a PDIM-deficient clone and identified a spontaneous point mutation in the putative polyketide synthase PpsD that results in a G44C amino acid substitution. We demonstrate by complementation with the wild-type ppsD gene and reversion of the ppsD gene to the wild-type sequence that the ppsD(G44C) point mutation is responsible for PDIM deficiency, virulence attenuation in NOS2(-/-) and wild-type C57BL/6 mice, and a growth advantage in vitro in liquid culture. We conclude that PDIM biosynthesis is required for M. tuberculosis resistance to an IFN-γ-mediated immune response that is independent of NOS2.


Assuntos
Interferon gama/imunologia , Lipídeos/biossíntese , Mycobacterium tuberculosis/imunologia , Policetídeo Sintases/genética , Imunidade Adaptativa , Substituição de Aminoácidos , Animais , Parede Celular/química , Elementos de DNA Transponíveis , Lipídeos/genética , Camundongos , Camundongos Endogâmicos C57BL , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/patogenicidade , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase/metabolismo , Mutação Puntual , Policetídeo Sintases/química , Policetídeo Sintases/metabolismo
17.
Cell Rep ; 34(8): 108782, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33626358

RESUMO

In cystic fibrosis (CF) airways, Pseudomonas aeruginosa forms cellular aggregates called biofilms that are thought to contribute to chronic infection. To form aggregates, P. aeruginosa can use different mechanisms, each with its own pathogenic implications. However, how they form in vivo is controversial and unclear. One mechanism involves a bacterially produced extracellular matrix that holds the aggregates together. Pel and Psl exopolysaccharides are structural and protective components of this matrix. We develop an immunohistochemical method to visualize Pel and Psl in CF sputum. We demonstrate that both exopolysaccharides are expressed in the CF airways and that the morphology of aggregates is consistent with an exopolysaccharide-dependent aggregation mechanism. We reason that the cationic exopolysaccharide Pel may interact with some of the abundant anionic host polymers in sputum. We show that Pel binds extracellular DNA (eDNA) and that this interaction likely impacts current therapies by increasing antimicrobial tolerance and protecting eDNA from digestion.


Assuntos
Fibrose Cística/microbiologia , Pulmão/microbiologia , Polissacarídeos Bacterianos/metabolismo , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/metabolismo , Infecções Respiratórias/microbiologia , Antibacterianos/uso terapêutico , Biofilmes/crescimento & desenvolvimento , Fibrose Cística/tratamento farmacológico , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Farmacorresistência Bacteriana , Expectorantes/uso terapêutico , Humanos , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/crescimento & desenvolvimento , Infecções Respiratórias/tratamento farmacológico , Escarro/microbiologia
18.
Front Pharmacol ; 11: 1219, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013356

RESUMO

BACKGROUND: CFTR modulators decrease some etiologies of CF airway inflammation; however, data indicate that non-resolving airway infection and inflammation persist in individuals with CF and chronic bacterial infections. Thus, identification of therapies that diminish airway inflammation without allowing unrestrained bacterial growth remains a critical research goal. Novel strategies for combatting deleterious airway inflammation in the CFTR modulator era require better understanding of cellular contributions to chronic CF airway disease, and how inflammatory cells change after initiation of CFTR modulator therapy. Peripheral blood monocytes, which traffic to the CF airway, can develop both pro-inflammatory and inflammation-resolving phenotypes, represent intriguing cellular targets for focused therapies. This therapeutic approach, however, requires a more detailed knowledge of CF monocyte cellular programming and phenotypes. MATERIAL AND METHODS: In order to characterize the inflammatory phenotype of CF monocytes, and how these cells change after initiation of CFTR modulator therapy, we studied adults (n=10) with CF, chronic airway infections, and the CFTR-R117H mutations before and 7 days after initiation of ivacaftor. Transcriptomes of freshly isolated blood monocytes were interrogated by RNA-sequencing (RNA-seq) followed by pathway-based analyses. Plasma concentrations of cytokines and chemokines were evaluated by multiplex ELISA. RESULTS: RNAseq identified approximately 50 monocyte genes for which basal expression was significantly changed in all 10 subjects after 7 days of ivacaftor. Of these, the majority were increased in expression post ivacaftor, including many genes traditionally associated with enhanced inflammation and immune responses. Pathway analyses confirmed that transcriptional programs were overwhelmingly up-regulated in monocytes after 7 days of ivacaftor, including biological modules associated with immunity, cell cycle, oxidative phosphorylation, and the unfolded protein response. Ivacaftor increased plasma concentrations of CXCL2, a neutrophil chemokine secreted by monocytes and macrophages, and CCL2, a monocyte chemokine. CONCLUSIONS: Our results demonstrate that ivacaftor causes acute changes in blood monocyte transcriptional profiles and plasma chemokines, and suggest that increased monocyte inflammatory signals and changes in myeloid cell trafficking may contribute to changes in airway inflammation in people taking CFTR modulators. To our knowledge, this is the first report investigating the transcriptomic response of circulating blood monocytes in CF subjects treated with a CFTR modulator.

19.
ERJ Open Res ; 6(2)2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32337217

RESUMO

This study demonstrates that initiation of the CFTR modulator ivacaftor in people with cystic fibrosis and susceptible CFTR mutations causes an acute reduction in blood monocyte sensitivity to the key proinflammatory cytokine IFN-γ http://bit.ly/2TeI6LG.

20.
J Cyst Fibros ; 19(4): 608-613, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31813753

RESUMO

BACKGROUND: Cystic fibrosis (CF) airways disease varies widely among patients with identical cystic fibrosis transmembrane conductance regulator (CFTR) genotypes. Robust airway inflammation is thought to be deleterious in CF; inter-individual variation in Toll-like receptor (TLR)-mediated innate immune inflammatory responses (TMIIR) might account for a portion of the phenotypic variation. We tested if TMIIR in people with CF are different than those of healthy controls, and whether higher TMIIR in people with CF are associated with reduced lung function. METHODS: We cultured whole blood from clinically stable subjects with CF (n = 76) and healthy controls (n = 45) with TLR agonists, and measured cytokine production and expression of TLR-associated genes. We tested for differences in TLR-stimulated cytokine levels between subjects with CF and healthy subjects, and for associations between cytokine and gene expression levels with baseline lung function (forced expiratory volume in one second percent predicted (FEV1%)) and decline in FEV1% over time. RESULTS: TMIIR in blood from subjects with CF were lower than in healthy controls. Expression of TLR regulators SARM1, TOLLIP, and AKT1 were downregulated in CF. In subjects with CF we found that lower TLR4-agonist-induced IL-8 was associated with lower FEV1% at enrollment (p<0.001) and with greater five year FEV1% decline (p<0.001). CONCLUSIONS: TMIIR were lower in people with CF relative to healthy controls; however, unexpectedly, greater whole blood TMIIR were positively associated with lung function in people with CF. These findings suggest a complex interaction between inflammation and disease in people with CF.


Assuntos
Fibrose Cística , Perfilação da Expressão Gênica/métodos , Imunidade Inata/imunologia , Testes de Função Respiratória/métodos , Receptores Toll-Like , Adulto , Proteínas do Domínio Armadillo/metabolismo , Correlação de Dados , Fibrose Cística/diagnóstico , Fibrose Cística/epidemiologia , Fibrose Cística/imunologia , Fibrose Cística/fisiopatologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Proteínas do Citoesqueleto/metabolismo , Regulação para Baixo , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Toll-Like/agonistas , Receptores Toll-Like/imunologia , Estados Unidos/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA