RESUMO
Understanding how genetic variants impact molecular phenotypes is a key goal of functional genomics, currently hindered by reliance on a single haploid reference genome. Here, we present the EN-TEx resource of 1,635 open-access datasets from four donors (â¼30 tissues × â¼15 assays). The datasets are mapped to matched, diploid genomes with long-read phasing and structural variants, instantiating a catalog of >1 million allele-specific loci. These loci exhibit coordinated activity along haplotypes and are less conserved than corresponding, non-allele-specific ones. Surprisingly, a deep-learning transformer model can predict the allele-specific activity based only on local nucleotide-sequence context, highlighting the importance of transcription-factor-binding motifs particularly sensitive to variants. Furthermore, combining EN-TEx with existing genome annotations reveals strong associations between allele-specific and GWAS loci. It also enables models for transferring known eQTLs to difficult-to-profile tissues (e.g., from skin to heart). Overall, EN-TEx provides rich data and generalizable models for more accurate personal functional genomics.
Assuntos
Epigenoma , Locos de Características Quantitativas , Estudo de Associação Genômica Ampla , Genômica , Fenótipo , Polimorfismo de Nucleotídeo ÚnicoRESUMO
Trimethylation of histone H3 at lysine 4 (H3K4me3) is a chromatin modification known to mark the transcription start sites of active genes. Here, we show that H3K4me3 domains that spread more broadly over genes in a given cell type preferentially mark genes that are essential for the identity and function of that cell type. Using the broadest H3K4me3 domains as a discovery tool in neural progenitor cells, we identify novel regulators of these cells. Machine learning models reveal that the broadest H3K4me3 domains represent a distinct entity, characterized by increased marks of elongation. The broadest H3K4me3 domains also have more paused polymerase at their promoters, suggesting a unique transcriptional output. Indeed, genes marked by the broadest H3K4me3 domains exhibit enhanced transcriptional consistency and [corrected] increased transcriptional levels, and perturbation of H3K4me3 breadth leads to changes in transcriptional consistency. Thus, H3K4me3 breadth contains information that could ensure transcriptional precision at key cell identity/function genes.
Assuntos
Células/metabolismo , Código das Histonas , Histonas/metabolismo , Transcrição Gênica , Animais , Inteligência Artificial , Genômica , Humanos , Lisina/metabolismo , Metilação , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/metabolismo , RNA Polimerase II/metabolismoRESUMO
The Encylopedia of DNA Elements (ENCODE) Project launched in 2003 with the long-term goal of developing a comprehensive map of functional elements in the human genome. These included genes, biochemical regions associated with gene regulation (for example, transcription factor binding sites, open chromatin, and histone marks) and transcript isoforms. The marks serve as sites for candidate cis-regulatory elements (cCREs) that may serve functional roles in regulating gene expression1. The project has been extended to model organisms, particularly the mouse. In the third phase of ENCODE, nearly a million and more than 300,000 cCRE annotations have been generated for human and mouse, respectively, and these have provided a valuable resource for the scientific community.
Assuntos
Bases de Dados Genéticas , Genoma/genética , Genômica , Anotação de Sequência Molecular , Animais , Sítios de Ligação , Cromatina/genética , Cromatina/metabolismo , Metilação de DNA , Bases de Dados Genéticas/normas , Bases de Dados Genéticas/tendências , Regulação da Expressão Gênica/genética , Genoma Humano/genética , Genômica/normas , Genômica/tendências , Histonas/metabolismo , Humanos , Camundongos , Anotação de Sequência Molecular/normas , Controle de Qualidade , Sequências Reguladoras de Ácido Nucleico/genética , Fatores de Transcrição/metabolismoRESUMO
The Encyclopedia of DNA Elements (ENCODE) is an ongoing collaborative research project aimed at identifying all the functional elements in the human and mouse genomes. Data generated by the ENCODE consortium are freely accessible at the ENCODE portal (https://www.encodeproject.org/), which is developed and maintained by the ENCODE Data Coordinating Center (DCC). Since the initial portal release in 2013, the ENCODE DCC has updated the portal to make ENCODE data more findable, accessible, interoperable and reusable. Here, we report on recent updates, including new ENCODE data and assays, ENCODE uniform data processing pipelines, new visualization tools, a dataset cart feature, unrestricted public access to ENCODE data on the cloud (Amazon Web Services open data registry, https://registry.opendata.aws/encode-project/) and more comprehensive tutorials and documentation.
Assuntos
DNA/genética , Bases de Dados Genéticas , Genoma Humano , Software , Animais , Genômica , Humanos , CamundongosRESUMO
The Encyclopedia of DNA Elements (ENCODE) Data Coordinating Center has developed the ENCODE Portal database and website as the source for the data and metadata generated by the ENCODE Consortium. Two principles have motivated the design. First, experimental protocols, analytical procedures and the data themselves should be made publicly accessible through a coherent, web-based search and download interface. Second, the same interface should serve carefully curated metadata that record the provenance of the data and justify its interpretation in biological terms. Since its initial release in 2013 and in response to recommendations from consortium members and the wider community of scientists who use the Portal to access ENCODE data, the Portal has been regularly updated to better reflect these design principles. Here we report on these updates, including results from new experiments, uniformly-processed data from other projects, new visualization tools and more comprehensive metadata to describe experiments and analyses. Additionally, the Portal is now home to meta(data) from related projects including Genomics of Gene Regulation, Roadmap Epigenome Project, Model organism ENCODE (modENCODE) and modERN. The Portal now makes available over 13000 datasets and their accompanying metadata and can be accessed at: https://www.encodeproject.org/.
Assuntos
DNA/genética , Bases de Dados Genéticas , Componentes do Gene , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Metadados , Animais , Caenorhabditis elegans/genética , Apresentação de Dados , Conjuntos de Dados como Assunto , Drosophila melanogaster/genética , Previsões , Genoma Humano , Humanos , Camundongos/genética , Interface Usuário-ComputadorRESUMO
The Saccharomyces Genome Database (SGD; http://www.yeastgenome.org) is the authoritative community resource for the Saccharomyces cerevisiae reference genome sequence and its annotation. In recent years, we have moved toward increased representation of sequence variation and allelic differences within S. cerevisiae. The publication of numerous additional genomes has motivated the creation of new tools for their annotation and analysis. Here we present the Variant Viewer: a dynamic open-source web application for the visualization of genomic and proteomic differences. Multiple sequence alignments have been constructed across high quality genome sequences from 11 different S. cerevisiae strains and stored in the SGD. The alignments and summaries are encoded in JSON and used to create a two-tiered dynamic view of the budding yeast pan-genome, available at http://www.yeastgenome.org/variant-viewer.
Assuntos
Bases de Dados Genéticas , Variação Genética , Genoma Fúngico , Saccharomyces cerevisiae/genética , Anotação de Sequência Molecular , Alinhamento de Sequência , Análise de Sequência de DNA , Análise de Sequência de Proteína , Interface Usuário-ComputadorRESUMO
The Encyclopedia of DNA Elements (ENCODE) Project is in its third phase of creating a comprehensive catalog of functional elements in the human genome. This phase of the project includes an expansion of assays that measure diverse RNA populations, identify proteins that interact with RNA and DNA, probe regions of DNA hypersensitivity, and measure levels of DNA methylation in a wide range of cell and tissue types to identify putative regulatory elements. To date, results for almost 5000 experiments have been released for use by the scientific community. These data are available for searching, visualization and download at the new ENCODE Portal (www.encodeproject.org). The revamped ENCODE Portal provides new ways to browse and search the ENCODE data based on the metadata that describe the assays as well as summaries of the assays that focus on data provenance. In addition, it is a flexible platform that allows integration of genomic data from multiple projects. The portal experience was designed to improve access to ENCODE data by relying on metadata that allow reusability and reproducibility of the experiments.
Assuntos
Bases de Dados Genéticas , Genoma Humano , Genômica , Animais , DNA/metabolismo , Genes , Humanos , Camundongos , Proteínas/metabolismo , RNA/metabolismoRESUMO
The Saccharomyces Genome Database (SGD; http://www.yeastgenome.org) is the community resource for genomic, gene and protein information about the budding yeast Saccharomyces cerevisiae, containing a variety of functional information about each yeast gene and gene product. We have recently added regulatory information to SGD and present it on a new tabbed section of the Locus Summary entitled 'Regulation'. We are compiling transcriptional regulator-target gene relationships, which are curated from the literature at SGD or imported, with permission, from the YEASTRACT database. For nearly every S. cerevisiae gene, the Regulation page displays a table of annotations showing the regulators of that gene, and a graphical visualization of its regulatory network. For genes whose products act as transcription factors, the Regulation page also shows a table of their target genes, accompanied by a Gene Ontology enrichment analysis of the biological processes in which those genes participate. We additionally synthesize information from the literature for each transcription factor in a free-text Regulation Summary, and provide other information relevant to its regulatory function, such as DNA binding site motifs and protein domains. All of the regulation data are available for querying, analysis and download via YeastMine, the InterMine-based data warehouse system in use at SGD.
Assuntos
Bases de Dados Genéticas , Regulação Fúngica da Expressão Gênica , Genoma Fúngico , Saccharomyces cerevisiae/genética , Sítios de Ligação , Redes Reguladoras de Genes , Internet , Estrutura Terciária de Proteína , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Transcrição GênicaRESUMO
As the sequencing of healthy and disease genomes becomes more commonplace, detailed annotation provides interpretation for individual variation responsible for normal and disease phenotypes. Current approaches focus on direct changes in protein coding genes, particularly nonsynonymous mutations that directly affect the gene product. However, most individual variation occurs outside of genes and, indeed, most markers generated from genome-wide association studies (GWAS) identify variants outside of coding segments. Identification of potential regulatory changes that perturb these sites will lead to a better localization of truly functional variants and interpretation of their effects. We have developed a novel approach and database, RegulomeDB, which guides interpretation of regulatory variants in the human genome. RegulomeDB includes high-throughput, experimental data sets from ENCODE and other sources, as well as computational predictions and manual annotations to identify putative regulatory potential and identify functional variants. These data sources are combined into a powerful tool that scores variants to help separate functional variants from a large pool and provides a small set of putative sites with testable hypotheses as to their function. We demonstrate the applicability of this tool to the annotation of noncoding variants from 69 full sequenced genomes as well as that of a personal genome, where thousands of functionally associated variants were identified. Moreover, we demonstrate a GWAS where the database is able to quickly identify the known associated functional variant and provide a hypothesis as to its function. Overall, we expect this approach and resource to be valuable for the annotation of human genome sequences.
Assuntos
Bases de Dados Genéticas , Variação Genética , Genoma Humano , Anotação de Sequência Molecular , Proteínas de Ligação a DNA/genética , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Internet , Peptídeos e Proteínas de Sinalização Intracelular/genética , Lúpus Eritematoso Sistêmico/genética , Proteínas Nucleares/genética , Fases de Leitura Aberta , Polimorfismo de Nucleotídeo Único , Sequências Reguladoras de Ácido Nucleico , Proteína 3 Induzida por Fator de Necrose Tumoral alfaRESUMO
The Saccharomyces Genome Database (SGD, http://www.yeastgenome.org) is the community resource for the budding yeast Saccharomyces cerevisiae. The SGD project provides the highest-quality manually curated information from peer-reviewed literature. The experimental results reported in the literature are extracted and integrated within a well-developed database. These data are combined with quality high-throughput results and provided through Locus Summary pages, a powerful query engine and rich genome browser. The acquisition, integration and retrieval of these data allow SGD to facilitate experimental design and analysis by providing an encyclopedia of the yeast genome, its chromosomal features, their functions and interactions. Public access to these data is provided to researchers and educators via web pages designed for optimal ease of use.
Assuntos
Bases de Dados Genéticas , Genoma Fúngico , Saccharomyces cerevisiae/genética , Genes Fúngicos , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular , Fenótipo , Software , Terminologia como AssuntoRESUMO
The Encyclopedia of DNA elements (ENCODE) project is a collaborative effort to create a comprehensive catalog of functional elements in the human genome. The current database comprises more than 19000 functional genomics experiments across more than 1000 cell lines and tissues using a wide array of experimental techniques to study the chromatin structure, regulatory and transcriptional landscape of the Homo sapiens and Mus musculus genomes. All experimental data, metadata, and associated computational analyses created by the ENCODE consortium are submitted to the Data Coordination Center (DCC) for validation, tracking, storage, and distribution to community resources and the scientific community. The ENCODE project has engineered and distributed uniform processing pipelines in order to promote data provenance and reproducibility as well as allow interoperability between genomic resources and other consortia. All data files, reference genome versions, software versions, and parameters used by the pipelines are captured and available via the ENCODE Portal. The pipeline code, developed using Docker and Workflow Description Language (WDL; https://openwdl.org/) is publicly available in GitHub, with images available on Dockerhub (https://hub.docker.com), enabling access to a diverse range of biomedical researchers. ENCODE pipelines maintained and used by the DCC can be installed to run on personal computers, local HPC clusters, or in cloud computing environments via Cromwell. Access to the pipelines and data via the cloud allows small labs the ability to use the data or software without access to institutional compute clusters. Standardization of the computational methodologies for analysis and quality control leads to comparable results from different ENCODE collections - a prerequisite for successful integrative analyses.
RESUMO
The Encyclopedia of DNA elements (ENCODE) project is a collaborative effort to create a comprehensive catalog of functional elements in the human genome. The current database comprises more than 19000 functional genomics experiments across more than 1000 cell lines and tissues using a wide array of experimental techniques to study the chromatin structure, regulatory and transcriptional landscape of the Homo sapiens and Mus musculus genomes. All experimental data, metadata, and associated computational analyses created by the ENCODE consortium are submitted to the Data Coordination Center (DCC) for validation, tracking, storage, and distribution to community resources and the scientific community. The ENCODE project has engineered and distributed uniform processing pipelines in order to promote data provenance and reproducibility as well as allow interoperability between genomic resources and other consortia. All data files, reference genome versions, software versions, and parameters used by the pipelines are captured and available via the ENCODE Portal. The pipeline code, developed using Docker and Workflow Description Language (WDL; https://openwdl.org/) is publicly available in GitHub, with images available on Dockerhub (https://hub.docker.com), enabling access to a diverse range of biomedical researchers. ENCODE pipelines maintained and used by the DCC can be installed to run on personal computers, local HPC clusters, or in cloud computing environments via Cromwell. Access to the pipelines and data via the cloud allows small labs the ability to use the data or software without access to institutional compute clusters. Standardization of the computational methodologies for analysis and quality control leads to comparable results from different ENCODE collections - a prerequisite for successful integrative analyses.
RESUMO
The Saccharomyces Genome Database (SGD; http://www.yeastgenome.org) is a scientific database for the molecular biology and genetics of the yeast Saccharomyces cerevisiae, which is commonly known as baker's or budding yeast. The information in SGD includes functional annotations, mapping and sequence information, protein domains and structure, expression data, mutant phenotypes, physical and genetic interactions and the primary literature from which these data are derived. Here we describe how published phenotypes and genetic interaction data are annotated and displayed in SGD.
Assuntos
Biologia Computacional/métodos , Bases de Dados de Ácidos Nucleicos , Genoma Fúngico , Mutação , Saccharomyces cerevisiae/genética , Biologia Computacional/tendências , DNA Fúngico , Bases de Dados Genéticas , Bases de Dados de Proteínas , Genes Fúngicos , Armazenamento e Recuperação da Informação/métodos , Internet , Fenótipo , Estrutura Terciária de Proteína , SoftwareRESUMO
The Saccharomyces Genome Database (SGD; http://www.yeastgenome.org/) collects and organizes biological information about the chromosomal features and gene products of the budding yeast Saccharomyces cerevisiae. Although published data from traditional experimental methods are the primary sources of evidence supporting Gene Ontology (GO) annotations for a gene product, high-throughput experiments and computational predictions can also provide valuable insights in the absence of an extensive body of literature. Therefore, GO annotations available at SGD now include high-throughput data as well as computational predictions provided by the GO Annotation Project (GOA UniProt; http://www.ebi.ac.uk/GOA/). Because the annotation method used to assign GO annotations varies by data source, GO resources at SGD have been modified to distinguish data sources and annotation methods. In addition to providing information for genes that have not been experimentally characterized, GO annotations from independent sources can be compared to those made by SGD to help keep the literature-based GO annotations current.
Assuntos
Bases de Dados Genéticas , Genes Fúngicos , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Biologia Computacional , Genoma Fúngico , Genômica , Internet , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/fisiologia , Interface Usuário-Computador , Vocabulário ControladoRESUMO
The Encyclopedia of DNA Elements (ENCODE) web portal hosts genomic data generated by the ENCODE Consortium, Genomics of Gene Regulation, The NIH Roadmap Epigenomics Consortium, and the modENCODE and modERN projects. The goal of the ENCODE project is to build a comprehensive map of the functional elements of the human and mouse genomes. Currently, the portal database stores over 500 TB of raw and processed data from over 15,000 experiments spanning assays that measure gene expression, DNA accessibility, DNA and RNA binding, DNA methylation, and 3D chromatin structure across numerous cell lines, tissue types, and differentiation states with selected genetic and molecular perturbations. The ENCODE portal provides unrestricted access to the aforementioned data and relevant metadata as a service to the scientific community. The metadata model captures the details of the experiments, raw and processed data files, and processing pipelines in human and machine-readable form and enables the user to search for specific data either using a web browser or programmatically via REST API. Furthermore, ENCODE data can be freely visualized or downloaded for additional analyses. © 2019 The Authors. Basic Protocol: Query the portal Support Protocol 1: Batch downloading Support Protocol 2: Using the cart to download files Support Protocol 3: Visualize data Alternate Protocol: Query building and programmatic access.
Assuntos
Cromatina/metabolismo , DNA/genética , Bases de Dados Genéticas , Epigenômica/métodos , Animais , Metilação de DNA , Genoma Humano , Humanos , Internet , Metadados , Camundongos , SoftwareRESUMO
Database URL: https://www.encodeproject.org/.
Assuntos
Curadoria de Dados/métodos , Bases de Dados de Ácidos Nucleicos/normasRESUMO
The Encyclopedia of DNA elements (ENCODE) project is an ongoing collaborative effort to create a comprehensive catalog of functional elements initiated shortly after the completion of the Human Genome Project. The current database exceeds 6500 experiments across more than 450 cell lines and tissues using a wide array of experimental techniques to study the chromatin structure, regulatory and transcriptional landscape of the H. sapiens and M. musculus genomes. All ENCODE experimental data, metadata, and associated computational analyses are submitted to the ENCODE Data Coordination Center (DCC) for validation, tracking, storage, unified processing, and distribution to community resources and the scientific community. As the volume of data increases, the identification and organization of experimental details becomes increasingly intricate and demands careful curation. The ENCODE DCC has created a general purpose software system, known as SnoVault, that supports metadata and file submission, a database used for metadata storage, web pages for displaying the metadata and a robust API for querying the metadata. The software is fully open-source, code and installation instructions can be found at: http://github.com/ENCODE-DCC/snovault/ (for the generic database) and http://github.com/ENCODE-DCC/encoded/ to store genomic data in the manner of ENCODE. The core database engine, SnoVault (which is completely independent of ENCODE, genomic data, or bioinformatic data) has been released as a separate Python package.