Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Genet ; 19(11): e1011033, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37963177

RESUMO

Vitamin D status-a complex trait influenced by environmental and genetic factors-is tightly associated with skin colour and ancestry. Yet very few studies have investigated the genetic underpinnings of vitamin D levels across diverse ancestries, and the ones that have, relied on small sample sizes, resulting in inconclusive results. Here, we conduct genome-wide association studies (GWAS) of 25 hydroxyvitamin D (25OHD)-the main circulating form of vitamin D-in 442,435 individuals from four broad genetically-determined ancestry groups represented in the UK Biobank: European (N = 421,867), South Asian (N = 9,983), African (N = 8,306) and East Asian (N = 2,279). We identify a new genetic determinant of 25OHD (rs146759773) in individuals of African ancestry, which was not detected in previous analysis of much larger European cohorts due to low minor allele frequency. We show genome-wide significant evidence of dominance effects in 25OHD that protect against vitamin D deficiency. Given that key events in the synthesis of 25OHD occur in the skin and are affected by pigmentation levels, we conduct GWAS of 25OHD stratified by skin colour and identify new associations. Lastly, we test the interaction between skin colour and variants associated with variance in 25OHD levels and identify two loci (rs10832254 and rs1352846) whose association with 25OHD differs in individuals of distinct complexions. Collectively, our results provide new insights into the complex relationship between 25OHD and skin colour and highlight the importance of diversity in genomic studies. Despite the much larger rates of vitamin D deficiency that we and others report for ancestry groups with dark skin (e.g., South Asian), our study highlights the importance of considering ancestral background and/or skin colour when assessing the implications of low vitamin D.


Assuntos
Estudo de Associação Genômica Ampla , Deficiência de Vitamina D , Humanos , Polimorfismo de Nucleotídeo Único/genética , Vitamina D/genética , Deficiência de Vitamina D/genética
2.
Am J Hum Genet ; 108(5): 786-798, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33811805

RESUMO

Non-additive genetic variance for complex traits is traditionally estimated from data on relatives. It is notoriously difficult to estimate without bias in non-laboratory species, including humans, because of possible confounding with environmental covariance among relatives. In principle, non-additive variance attributable to common DNA variants can be estimated from a random sample of unrelated individuals with genome-wide SNP data. Here, we jointly estimate the proportion of variance explained by additive (hSNP2), dominance (δSNP2) and additive-by-additive (ηSNP2) genetic variance in a single analysis model. We first show by simulations that our model leads to unbiased estimates and provide a new theory to predict standard errors estimated using either least-squares or maximum likelihood. We then apply the model to 70 complex traits using 254,679 unrelated individuals from the UK Biobank and 1.1 M genotyped and imputed SNPs. We found strong evidence for additive variance (average across traits h¯SNP2=0.208). In contrast, the average estimate of δ¯SNP2 across traits was 0.001, implying negligible dominance variance at causal variants tagged by common SNPs. The average epistatic variance η¯SNP2 across the traits was 0.055, not significantly different from zero because of the large sampling variance. Our results provide new evidence that genetic variance for complex traits is predominantly additive and that sample sizes of many millions of unrelated individuals are needed to estimate epistatic variance with sufficient precision.


Assuntos
Conjuntos de Dados como Assunto , Herança Multifatorial/genética , Polimorfismo de Nucleotídeo Único/genética , Bancos de Espécimes Biológicos , Epistasia Genética , Feminino , Genótipo , Humanos , Masculino , Modelos Genéticos , Fenótipo , Reprodutibilidade dos Testes , Reino Unido
3.
PLoS Genet ; 17(5): e1009548, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34014919

RESUMO

Fisher's partitioning of genotypic values and genetic variance is highly relevant in the current era of genome-wide association studies (GWASs). However, despite being more than a century old, a number of persistent misconceptions related to nonadditive genetic effects remain. We developed a user-friendly web tool, the Falconer ShinyApp, to show how the combination of gene action and allele frequencies at causal loci translate to genetic variance and genetic variance components for a complex trait. The app can be used to demonstrate the relationship between a SNP effect size estimated from GWAS and the variation the SNP generates in the population, i.e., how locus-specific effects lead to individual differences in traits. In addition, it can also be used to demonstrate how within and between locus interactions (dominance and epistasis, respectively) usually do not lead to a large amount of nonadditive variance relative to additive variance, and therefore, that these interactions usually do not explain individual differences in a population.


Assuntos
Genes/genética , Variação Genética , Estudo de Associação Genômica Ampla , Internet , Software , Epistasia Genética , Frequência do Gene , Genes Dominantes , Loci Gênicos/genética , Genótipo , Humanos , Modelos Genéticos , Polimorfismo de Nucleotídeo Único
5.
Front Plant Sci ; 14: 1260517, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38023905

RESUMO

Mate-allocation strategies in breeding programs can improve progeny performance by harnessing non-additive genetic effects. These approaches prioritise predicted progeny merit over parental breeding value, making them particularly appealing for clonally propagated crops such as sugarcane. We conducted a comparative analysis of mate-allocation strategies, exploring utilising non-additive and heterozygosity effects to maximise clonal performance with schemes that solely consider additive effects to optimise breeding value. Using phenotypic and genotypic data from a population of 2,909 clones evaluated in final assessment trials of Australian sugarcane breeding programs, we focused on three important traits: tonnes of cane per hectare (TCH), commercial cane sugar (CCS), and Fibre. By simulating families from all possible crosses (1,225) with 50 progenies each, we predicted the breeding and clonal values of progeny using two models: GBLUP (considering additive effects only) and extended-GBLUP (incorporating additive, non-additive, and heterozygosity effects). Integer linear programming was used to identify the optimal mate-allocation among selected parents. Compared to breeding value-based approaches, mate-allocation strategies based on clonal performance yielded substantial improvements, with predicted progeny values increasing by 57% for TCH, 12% for CCS, and 16% for fibre. Our simulation study highlights the effectiveness of mate-allocation approaches that exploit non-additive and heterozygosity effects, resulting in superior clonal performance. However, there was a notable decline in additive gain, particularly for TCH, likely due to significant epistatic effects. When selecting crosses based on clonal performance for TCH, the inbreeding coefficient of progeny was significantly lower compared to random mating, underscoring the advantages of leveraging non-additive and heterozygosity effects in mitigating inbreeding depression. Thus, mate-allocation strategies are recommended in clonally propagated crops to enhance clonal performance and reduce the negative impacts of inbreeding.

6.
Genetics ; 210(1): 315-330, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30061425

RESUMO

The advent of high throughput sequencing and genotyping technologies enables the comparison of patterns of polymorphisms at a very large number of markers. While the characterization of genetic structure from individual sequencing data remains expensive for many nonmodel species, it has been shown that sequencing pools of individual DNAs (Pool-seq) represents an attractive and cost-effective alternative. However, analyzing sequence read counts from a DNA pool instead of individual genotypes raises statistical challenges in deriving correct estimates of genetic differentiation. In this article, we provide a method-of-moments estimator of [Formula: see text] for Pool-seq data, based on an analysis-of-variance framework. We show, by means of simulations, that this new estimator is unbiased and outperforms previously proposed estimators. We evaluate the robustness of our estimator to model misspecification, such as sequencing errors and uneven contributions of individual DNAs to the pools. Finally, by reanalyzing published Pool-seq data of different ecotypes of the prickly sculpin Cottus asper, we show how the use of an unbiased [Formula: see text] estimator may question the interpretation of population structure inferred from previous analyses.


Assuntos
Variação Genética/genética , Análise de Sequência de DNA/métodos , Análise de Sequência de DNA/estatística & dados numéricos , Alelos , Simulação por Computador , DNA/genética , Bases de Dados Genéticas , Frequência do Gene/genética , Genômica , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Polimorfismo de Nucleotídeo Único/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA