Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Immunol ; 202(4): 1153-1162, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30642979

RESUMO

Endothelial dysfunction and vascular leak, pathogenic hallmarks of severe dengue disease, are directly triggered by dengue virus (DENV) nonstructural protein 1 (NS1). Previous studies have shown that immunization with NS1, as well as passive transfer of NS1-immune serum or anti-NS1 mAb, prevent NS1-mediated lethality in vivo. In this study, we evaluated the immunogenicity and protective capacity of recombinant DENV NS1 administered with cyclic dinucleotides (CDNs), potent activators of innate immune pathways and highly immunogenic adjuvants. Using both wild-type C57BL/6 mice and IFN-α/ß receptor-deficient mice, we show that NS1-CDN immunizations elicit serotype-specific and cross-reactive Ab and T cell responses. Furthermore, NS1-CDN vaccinations conferred significant homotypic and heterotypic protection from DENV2-induced morbidity and mortality. In addition, we demonstrate that high anti-NS1 Ab titers are associated with protection, supporting the role of humoral responses against DENV NS1 as correlates of protection. These findings highlight the potential of CDN-based adjuvants for inducing Ab and T cell responses and validate NS1 as an important candidate for dengue vaccine development.


Assuntos
Adjuvantes Imunológicos , Anticorpos Antivirais/imunologia , Vírus da Dengue/imunologia , Nucleotídeos Cíclicos/imunologia , Linfócitos T/imunologia , Proteínas não Estruturais Virais/imunologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
2.
Cancer Immunol Res ; 6(4): 422-433, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29472271

RESUMO

The cGAS-STING cytosolic DNA sensing pathway may play an integral role in the initiation of antitumor immune responses. Studies evaluating the immunogenicity of various cyclic dinucleotide (CDN) STING agonists administered by intratumoral (i.t.) injection showed potent induction of inflammation, tumor necrosis, and, in some cases, durable tumor-specific adaptive immunity. However, the specific immune mechanisms underlying these responses remain incompletely defined. The majority of these studies have focused on the effect of CDNs on immune cells but have not conclusively interrogated the role of stromal cells in the acute rejection of the CDN-injected tumor. Here, we revealed a mechanism of STING agonist-mediated tumor response that relied on both stromal and immune cells to achieve tumor regression and clearance. Using knockout and bone marrow chimeric mice, we showed that although bone marrow-derived TNFα was necessary for CDN-induced necrosis, STING signaling in radioresistant stromal cells was also essential for CDN-mediated tumor rejection. These results provide evidence for crosstalk between stromal and hematopoietic cells during CDN-mediated tumor collapse after i.t. administration. These mechanistic insights may prove critical in the clinical development of STING agonists. Cancer Immunol Res; 6(4); 422-33. ©2018 AACR.


Assuntos
Antineoplásicos/farmacologia , Proteínas de Membrana/agonistas , Neoplasias/etiologia , Neoplasias/metabolismo , Nucleotídeos Cíclicos/farmacologia , Tolerância a Radiação , Células Estromais/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Medula Óssea/metabolismo , Linhagem Celular Tumoral , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Imunidade Inata , Interferon beta/metabolismo , Melanoma Experimental , Camundongos , Camundongos Knockout , Necrose/metabolismo , Necrose/patologia , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Tolerância a Radiação/efeitos dos fármacos , Tolerância a Radiação/genética , Transdução de Sinais/efeitos dos fármacos , Células Estromais/patologia , Células Estromais/efeitos da radiação , Carga Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
3.
PLoS One ; 11(9): e0163521, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27662655

RESUMO

Metastasis is the most common cause of mortality in breast cancer patients worldwide. To identify improved mouse models for breast cancer growth and spontaneous metastasis, we examined growth and metastasis of both estrogen receptor positive (T47D) and negative (MDA-MB-231, SUM1315, and CN34BrM) human breast cancer cells in nude and NSG mice. Both primary tumor growth and spontaneous metastases were increased in NSG mice compared to nude mice. In addition, a pattern of metastasis similar to that observed in human breast cancer patients (metastases to the lungs, liver, bones, brain, and lymph nodes) was found in NSG mice. Furthermore, there was an increase in the metastatic burden in NSG compared to nude mice that were injected with MDA-MB-231 breast cancer cells in an intracardiac experimental metastasis model. This data demonstrates that NSG mice provide a better model for studying human breast cancer metastasis compared to the current nude mouse model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA