Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Genome Res ; 33(2): 283-298, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36639202

RESUMO

The epithelial and interstitial stem cells of the freshwater polyp Hydra are the best-characterized stem cell systems in any cnidarian, providing valuable insight into cell type evolution and the origin of stemness in animals. However, little is known about the transcriptional regulatory mechanisms that determine how these stem cells are maintained and how they give rise to their diverse differentiated progeny. To address such questions, a thorough understanding of transcriptional regulation in Hydra is needed. To this end, we generated extensive new resources for characterizing transcriptional regulation in Hydra, including new genome assemblies for Hydra oligactis and the AEP strain of Hydra vulgaris, an updated whole-animal single-cell RNA-seq atlas, and genome-wide maps of chromatin interactions, chromatin accessibility, sequence conservation, and histone modifications. These data revealed the existence of large kilobase-scale chromatin interaction domains in the Hydra genome that contain transcriptionally coregulated genes. We also uncovered the transcriptomic profiles of two previously molecularly uncharacterized cell types: isorhiza-type nematocytes and somatic gonad ectoderm. Finally, we identified novel candidate regulators of cell type-specific transcription, several of which have likely been conserved at least since the divergence of Hydra and the jellyfish Clytia hemisphaerica more than 400 million years ago.


Assuntos
Hydra , Animais , Hydra/genética , Hydra/metabolismo , Diferenciação Celular , Cromatina/metabolismo , Cromossomos , Epigênese Genética
2.
Proc Natl Acad Sci U S A ; 119(29): e2203257119, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858299

RESUMO

How did cells of early metazoan organisms first organize themselves to form a body axis? The canonical Wnt pathway has been shown to be sufficient for induction of axis in Cnidaria, a sister group to Bilateria, and is important in bilaterian axis formation. Here, we provide experimental evidence that in cnidarian Hydra the Hippo pathway regulates the formation of a new axis during budding upstream of the Wnt pathway. The transcriptional target of the Hippo pathway, the transcriptional coactivator YAP, inhibits the initiation of budding in Hydra and is regulated by Hydra LATS. In addition, we show functions of the Hippo pathway in regulation of actin organization and cell proliferation in Hydra. We hypothesize that the Hippo pathway served as a link between continuous cell division, cell density, and axis formation early in metazoan evolution.


Assuntos
Via de Sinalização Hippo , Hydra , Morfogênese , Animais , Padronização Corporal , Hydra/genética , Hydra/crescimento & desenvolvimento , Hydra/metabolismo , Morfogênese/genética , Transcrição Gênica , Proteínas de Sinalização YAP/metabolismo
3.
Bioessays ; 38(3): 216-9, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26798974

RESUMO

This recent meeting covered non-bilaterian (e.g., cnidarians, ctenophores, and sponges) animals broadly, but with emphasis in four areas: 1) New genomic resources and tools for functional studies, 2) advances in developmental and regeneration studies, 3) the evolution and function of nervous systems, 4) symbiosis and the holobiome.


Assuntos
Evolução Biológica , Animais , Mapeamento Cromossômico , Cnidários/citologia , Cnidários/genética , Cnidários/crescimento & desenvolvimento , Genoma , Análise de Sequência de DNA , Células-Tronco/fisiologia , Simbiose
4.
Dev Biol ; 412(1): 148-159, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26921448

RESUMO

Apical-basal and planar cell polarities are hallmarks of metazoan epithelia required to separate internal and external environments and to regulate trans- and intracellular transport, cytoskeletal organization, and morphogenesis. Mechanisms of cell polarization have been intensively studied in bilaterian model organisms, particularly in early embryos and cultured cells, while cell polarity in pre-bilaterian tissues is poorly understood. Here, we have studied apical-basal and planar polarization in regenerating (aggregating) clusters of epitheliomuscular cells of Hydra, a simple representative of the ancestral, pre-bilaterian phylum Cnidaria. Immediately after dissociation, single epitheliomuscular cells do not exhibit cellular polarity, but they polarize de novo during aggregation. Reestablishment of the Hydra-specific epithelial bilayer is a result of short-range cell sorting. In the early phase of aggregation, apical-basal polarization starts with an enlargement of the epithelial apical-basal diameter and by the development of belt-like apical septate junctions. Specification of the basal pole of epithelial cells occurs shortly later and is linked to synthesis of mesoglea, development of hemidesmosome-like junctions, and formation of desmosome-like junctions connecting the basal myonemes of neighbouring cells. Planar polarization starts, while apical-basal polarization is already ongoing. It is executed gradually starting with cell-autonomous formation, parallelization, and condensation of myonemes at the basal end of each epithelial cell and continuing with a final planar alignment of epitheliomuscular cells at the tissue level. Our findings reveal that epithelial polarization in Hydra aggregates occurs in defined steps well accessible by histological and ultrastructural techniques and they will provide a basis for future molecular studies.


Assuntos
Polaridade Celular , Hydra/citologia , Músculos/citologia , Animais , Células Epiteliais/citologia
5.
Bioessays ; 36(12): 1185-94, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25205353

RESUMO

Ecological developmental biology (eco-devo) explores the mechanistic relationships between the processes of individual development and environmental factors. Recent studies imply that some of these relationships have deep evolutionary origins, and may even pre-date the divergences of the simplest extant animals, including cnidarians and sponges. Development of these early diverging metazoans is often sensitive to environmental factors, and these interactions occur in the context of conserved signaling pathways and mechanisms of tissue homeostasis whose detailed molecular logic remain elusive. Efficient methods for transgenesis in cnidarians together with the ease of experimental manipulation in cnidarians and sponges make them ideal models for understanding causal relationships between environmental factors and developmental mechanisms. Here, we identify major questions at the interface between animal evolution and development and outline a road map for research aimed at identifying the mechanisms that link environmental factors to developmental mechanisms in early diverging metazoans. Also watch the Video Abstract.


Assuntos
Evolução Biológica , Cnidários/crescimento & desenvolvimento , Interação Gene-Ambiente , Estágios do Ciclo de Vida/genética , Poríferos/crescimento & desenvolvimento , Animais , Cnidários/classificação , Cnidários/genética , Ecossistema , Extinção Biológica , Regulação da Expressão Gênica no Desenvolvimento , Metamorfose Biológica/genética , Filogenia , Poríferos/classificação , Poríferos/genética , Transdução de Sinais
6.
Biofouling ; 32(9): 1115-1129, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27661452

RESUMO

The differentiated ectodermal basal disc cells of the freshwater cnidarian Hydra secrete proteinaceous glue to temporarily attach themselves to underwater surfaces. Using transcriptome sequencing and a basal disc-specific RNA-seq combined with in situ hybridisation a highly specific set of candidate adhesive genes was identified. A de novo transcriptome assembly of 55,849 transcripts (>200 bp) was generated using paired-end and single reads from Illumina libraries constructed from different polyp conditions. Differential transcriptomics and spatial gene expression analysis by in situ hybridisation allowed the identification of 40 transcripts exclusively expressed in the ectodermal basal disc cells. Comparisons after mass spectrometry analysis of the adhesive secretion showed a total of 21 transcripts to be basal disc specific and eventually secreted through basal disc cells. This is the first study to survey adhesion-related genes in Hydra. The candidate list presented in this study provides a platform for unravelling the molecular mechanism of underwater adhesion of Hydra.

7.
Dev Biol ; 395(1): 154-66, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25149325

RESUMO

Formation of a constriction and tissue separation between parent and young polyp is a hallmark of the Hydra budding process and controlled by fibroblast growth factor receptor (FGFR) signaling. Appearance of a cluster of cells positive for double phosphorylated ERK (dpERK) at the late separation site indicated that the RAS/MEK/ERK pathway might be a downstream target of the Hydra Kringelchen FGFR. In fact, inhibition of ERK phosphorylation by the MEK inhibitor U0126 reversibly delayed bud detachment and prevented formation of the dpERK-positive cell cluster indicating de novo-phosphorylation of ERK at the late bud base. In functional studies, a dominant-negative Kringelchen FGFR prevented bud detachment as well as appearance of the dpERK-positive cell cluster. Ectopic expression of full length Kringelchen, on the other hand, induced a localized rearrangement of the actin cytoskeleton at sites of constriction, localized ERK-phosphorylation and autotomy of the body column. Our data suggest a model in which (i) the Hydra FGFR targets, via an unknown pathway, the actin cytoskeleton to induce a constriction and (ii) FGFR activates MEK/ERK signaling at the late separation site to allow tissue separation.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Hydra/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais , Animais , Animais Geneticamente Modificados , Western Blotting , Butadienos/farmacologia , Inibidores Enzimáticos/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hydra/embriologia , Hydra/crescimento & desenvolvimento , Hibridização In Situ , Microscopia Confocal , Microscopia de Fluorescência , Morfogênese/efeitos dos fármacos , Morfogênese/genética , Nitrilas/farmacologia , Fosforilação/efeitos dos fármacos , Pirróis/farmacologia , Receptores de Fatores de Crescimento de Fibroblastos/antagonistas & inibidores , Fatores de Tempo
8.
Mol Biol Cell ; 35(3): br9, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38265917

RESUMO

Cells rely on a diverse array of engulfment processes to sense, exploit, and adapt to their environments. Among these, macropinocytosis enables indiscriminate and rapid uptake of large volumes of fluid and membrane, rendering it a highly versatile engulfment strategy. Much of the molecular machinery required for macropinocytosis has been well established, yet how this process is regulated in the context of organs and organisms remains poorly understood. Here, we report the discovery of extensive macropinocytosis in the outer epithelium of the cnidarian Hydra vulgaris. Exploiting Hydra's relatively simple body plan, we developed approaches to visualize macropinocytosis over extended periods of time, revealing constitutive engulfment across the entire body axis. We show that the direct application of planar stretch leads to calcium influx and the inhibition of macropinocytosis. Finally, we establish a role for stretch-activated channels in inhibiting this process. Together, our approaches provide a platform for the mechanistic dissection of constitutive macropinocytosis in physiological contexts and highlight a potential role for macropinocytosis in responding to cell surface tension.


Assuntos
Hydra , Animais , Hydra/metabolismo , Pinocitose
9.
Elife ; 122024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38407174

RESUMO

The Hydra nervous system is the paradigm of a 'simple nerve net'. Nerve cells in Hydra, as in many cnidarian polyps, are organized in a nerve net extending throughout the body column. This nerve net is required for control of spontaneous behavior: elimination of nerve cells leads to polyps that do not move and are incapable of capturing and ingesting prey (Campbell, 1976). We have re-examined the structure of the Hydra nerve net by immunostaining fixed polyps with a novel antibody that stains all nerve cells in Hydra. Confocal imaging shows that there are two distinct nerve nets, one in the ectoderm and one in the endoderm, with the unexpected absence of nerve cells in the endoderm of the tentacles. The nerve nets in the ectoderm and endoderm do not contact each other. High-resolution TEM (transmission electron microscopy) and serial block face SEM (scanning electron microscopy) show that the nerve nets consist of bundles of parallel overlapping neurites. Results from transgenic lines show that neurite bundles include different neural circuits and hence that neurites in bundles require circuit-specific recognition. Nerve cell-specific innexins indicate that gap junctions can provide this specificity. The occurrence of bundles of neurites supports a model for continuous growth and differentiation of the nerve net by lateral addition of new nerve cells to the existing net. This model was confirmed by tracking newly differentiated nerve cells.


Assuntos
Cnidários , Hydra , Animais , Rede Nervosa , Neurônios , Neuritos
10.
Proc Natl Acad Sci U S A ; 107(9): 4051-6, 2010 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-20142507

RESUMO

The c-myc protooncogene encodes a transcription factor (Myc) with oncogenic potential. Myc and its dimerization partner Max are bHLH-Zip DNA binding proteins controlling fundamental cellular processes. Deregulation of c-myc leads to tumorigenesis and is a hallmark of many human cancers. We have identified and extensively characterized ancestral forms of myc and max genes from the early diploblastic cnidarian Hydra, the most primitive metazoan organism employed so far for the structural, functional, and evolutionary analysis of these genes. Hydra myc is specifically activated in all stem cells and nematoblast nests which represent the rapidly proliferating cell types of the interstitial stem cell system and in proliferating gland cells. In terminally differentiated nerve cells, nematocytes, or epithelial cells, myc expression is not detectable by in situ hybridization. Hydra max exhibits a similar expression pattern in interstitial cell clusters. The ancestral Hydra Myc and Max proteins display the principal design of their vertebrate derivatives, with the highest degree of sequence identities confined to the bHLH-Zip domains. Furthermore, the 314-amino acid Hydra Myc protein contains basic forms of the essential Myc boxes I through III. A recombinant Hydra Myc/Max complex binds to the consensus DNA sequence CACGTG with high affinity. Hybrid proteins composed of segments from the retroviral v-Myc oncoprotein and the Hydra Myc protein display oncogenic potential in cell transformation assays. Our results suggest that the principal functions of the Myc master regulator arose very early in metazoan evolution, allowing their dissection in a simple model organism showing regenerative ability but no senescence.


Assuntos
Genes myc , Hydra/fisiologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Células-Tronco/citologia , Sequência de Aminoácidos , Animais , Fatores de Transcrição de Zíper de Leucina Básica/química , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Linhagem da Célula , Hydra/genética , Dados de Sequência Molecular , Proteínas Proto-Oncogênicas c-myc/química , Homologia de Sequência de Aminoácidos
11.
Cells ; 12(9)2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37174665

RESUMO

The proto-oncogene myc has been intensively studied primarily in vertebrate cell culture systems. Myc transcription factors control fundamental cellular processes such as cell proliferation, cell cycle control and stem cell maintenance. Myc interacts with the Max protein and Myc/Max heterodimers regulate thousands of target genes. The genome of the freshwater polyp Hydra encodes four myc genes (myc1-4). Previous structural and biochemical characterization showed that the Hydra Myc1 and Myc2 proteins share high similarities with vertebrate c-Myc, and their expression patterns suggested a function in adult stem cell maintenance. In contrast, an additional Hydra Myc protein termed Myc3 is highly divergent, lacking the common N-terminal domain and all conserved Myc-boxes. Single cell transcriptome analysis revealed that the myc3 gene is expressed in a distinct population of interstitial precursor cells committed to nerve- and gland-cell differentiation, where the Myc3 protein may counteract the stemness actions of Myc1 and Myc2 and thereby allow the implementation of a differentiation program. In vitro DNA binding studies showed that Myc3 dimerizes with Hydra Max, and this dimer efficiently binds to DNA containing the canonical Myc consensus motif (E-box). In vivo cell transformation assays in avian fibroblast cultures further revealed an unexpected high potential for oncogenic transformation in the conserved Myc3 C-terminus, as compared to Hydra Myc2 or Myc1. Structure modeling of the Myc3 protein predicted conserved amino acid residues in its bHLH-LZ domain engaged in Myc3/Max dimerization. Mutating these amino acid residues in the human c-Myc (MYC) sequence resulted in a significant decrease in its cell transformation potential. We discuss our findings in the context of oncogenic transformation and cell differentiation, both relevant for human cancer, where Myc represents a major driver.


Assuntos
Hydra , Animais , Humanos , Hydra/genética , Sequência de Aminoácidos , Genes myc , Sequências Hélice-Alça-Hélice , Aminoácidos
12.
Proc Natl Acad Sci U S A ; 106(11): 4290-5, 2009 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-19237582

RESUMO

In and evaginations of 2D cell sheets are major shape generating processes in animal development. They result from directed movement and intercalation of polarized cells associated with cell shape changes. Work on several bilaterian model organisms has emphasized the role of noncanonical Wnt signaling in cell polarization and movement. However, the molecular processes responsible for generating tissue and body shape in ancestral, prebilaterian animals are unknown. We show that noncanonical Wnt signaling acts in mass tissue movements during bud and tentacle evagination and regeneration in the cnidarian polyp Hydra. The wnt5, wnt8, frizzled2 (fz2), and dishevelled-expressing cell clusters define the positions, where bud and tentacle evaginations are initiated; wnt8, fz2, and dishevelled remain up-regulated in those epithelial cells, undergoing cell shape changes during the entire evagination process. Downstream of wnt and dsh expression, JNK activity is required for the evagination process. Multiple ectopic wnt5, wnt8, fz2, and dishevelled-expressing centers and the subsequent evagination of ectopic tentacles are induced throughout the body column by activation of Wnt/beta-Catenin signaling. Our results indicate that integration of axial patterning and tissue morphogenesis by the coordinated action of canonical and noncanonical Wnt pathways was crucial for the evolution of eumetazoan body plans.


Assuntos
Hydra/citologia , Transdução de Sinais/fisiologia , Proteínas Wnt/fisiologia , beta Catenina/fisiologia , Animais , Padronização Corporal , Movimento Celular , Polaridade Celular , Receptores Frizzled/fisiologia , Dados de Sequência Molecular
13.
Biomimetics (Basel) ; 7(4)2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36278723

RESUMO

Hydra is a freshwater solitary polyp, capable of temporary adhesion to underwater surfaces. The reversible attachment is based on an adhesive material that is secreted from its basal disc cells and left behind on the substrate as a footprint. Despite Hydra constituting a standard model system in stem cell biology and tissue regeneration, few studies have addressed its bioadhesion. This project aimed to characterize the glycan composition of the Hydra adhesive, using a set of 23 commercially available lectins to label Hydra cells and footprints. The results indicated the presence of N-acetylglucosamine, N-acetylgalactosamine, fucose, and mannose in the adhesive material. The labeling revealed a meshwork-like substructure in the footprints, implying that the adhesive is mainly formed by fibers. Furthermore, lectins might serve as a marker for Hydra cells and structures, e.g., many labeled as glycan-rich nematocytes. Additionally, some unexpected patterns were uncovered, such as structures associated with radial muscle fibers and endodermal gland cells in the hypostome of developing buds.

14.
Biol Rev Camb Philos Soc ; 97(1): 299-325, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34617397

RESUMO

Adult stem cells (ASCs) in vertebrates and model invertebrates (e.g. Drosophila melanogaster) are typically long-lived, lineage-restricted, clonogenic and quiescent cells with somatic descendants and tissue/organ-restricted activities. Such ASCs are mostly rare, morphologically undifferentiated, and undergo asymmetric cell division. Characterized by 'stemness' gene expression, they can regulate tissue/organ homeostasis, repair and regeneration. By contrast, analysis of other animal phyla shows that ASCs emerge at different life stages, present both differentiated and undifferentiated phenotypes, and may possess amoeboid movement. Usually pluri/totipotent, they may express germ-cell markers, but often lack germ-line sequestering, and typically do not reside in discrete niches. ASCs may constitute up to 40% of animal cells, and participate in a range of biological phenomena, from whole-body regeneration, dormancy, and agametic asexual reproduction, to indeterminate growth. They are considered legitimate units of selection. Conceptualizing this divergence, we present an alternative stemness metaphor to the Waddington landscape: the 'wobbling Penrose' landscape. Here, totipotent ASCs adopt ascending/descending courses of an 'Escherian stairwell', in a lifelong totipotency pathway. ASCs may also travel along lower stemness echelons to reach fully differentiated states. However, from any starting state, cells can change their stemness status, underscoring their dynamic cellular potencies. Thus, vertebrate ASCs may reflect just one metazoan ASC archetype.


Assuntos
Células-Tronco Adultas , Drosophila melanogaster , Animais , Diferenciação Celular , Fenótipo
15.
Nature ; 433(7022): 156-60, 2005 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-15650739

RESUMO

The Wnt gene family encodes secreted signalling molecules that control cell fate in animal development and human diseases. Despite its significance, the evolution of this metazoan-specific protein family is unclear. In vertebrates, twelve Wnt subfamilies were defined, of which only six have counterparts in Ecdysozoa (for example, Drosophila and Caenorhabditis). Here, we report the isolation of twelve Wnt genes from the sea anemone Nematostella vectensis, a species representing the basal group within cnidarians. Cnidarians are diploblastic animals and the sister-group to bilaterian metazoans. Phylogenetic analyses of N. vectensis Wnt genes reveal a thus far unpredicted ancestral diversity within the Wnt family. Cnidarians and bilaterians have at least eleven of the twelve known Wnt gene subfamilies in common; five subfamilies appear to be lost in the protostome lineage. Expression patterns of Wnt genes during N. vectensis embryogenesis indicate distinct roles of Wnts in gastrulation, resulting in serial overlapping expression domains along the primary axis of the planula larva. This unexpectedly complex inventory of Wnt family signalling factors evolved in early multi-cellular animals about 650 million years (Myr) ago, predating the Cambrian explosion by at least 100 Myr (refs 5, 8). It emphasizes the crucial function of Wnt genes in the diversification of eumetazoan body plans.


Assuntos
Evolução Molecular , Peptídeos e Proteínas de Sinalização Intercelular/genética , Família Multigênica/genética , Anêmonas-do-Mar/genética , Animais , Teorema de Bayes , Clonagem Molecular , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Dados de Sequência Molecular , Filogenia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Anêmonas-do-Mar/embriologia , Alinhamento de Sequência , Proteínas Wnt
16.
FEBS J ; 286(12): 2295-2310, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30869835

RESUMO

The c-Myc protein is a transcription factor with oncogenic potential controlling fundamental cellular processes. Homologs of the human c-myc protooncogene have been identified in the early diploblastic cnidarian Hydra (myc1, myc2). The ancestral Myc1 and Myc2 proteins display the principal design and biochemical properties of their vertebrate derivatives, suggesting that important Myc functions arose very early in metazoan evolution. c-Myc is part of a transcription factor network regulated by several upstream pathways implicated in oncogenesis and development. One of these signaling cascades is the Wnt/ß-Catenin pathway driving cell differentiation and developmental patterning, but also tumorigenic processes including aberrant transcriptional activation of c-myc in several human cancers. Here, we show that genetic or pharmacological stimulation of Wnt/ß-Catenin signaling in Hydra is accompanied by specific downregulation of myc1 at mRNA and protein levels. The myc1 and myc2 promoter regions contain consensus binding sites for the transcription factor Tcf, and Hydra Tcf binds to the regulatory regions of both promoters. The myc1 promoter is also specifically repressed in the presence of ectopic Hydra ß-Catenin/Tcf in avian cell culture. We propose that Hydra myc1 is a negative Wnt signaling target, in contrast to vertebrate c-myc, which is one of the best studied genes activated by this pathway. On the contrary, myc2 is not suppressed by ectopic ß-Catenin in Hydra and presumably represents the structural and functional c-myc ortholog. Our data implicate that the connection between ß-Catenin-mediated signaling and myc1 and myc2 gene regulation is an ancestral metazoan feature. Its impact on decision making in Hydra interstitial stem cells is discussed.


Assuntos
Hydra/genética , Proteínas Proto-Oncogênicas c-myc/genética , Fatores de Transcrição/genética , Ativação Transcricional/genética , Animais , Padronização Corporal/genética , Regulação da Expressão Gênica/genética , Hydra/crescimento & desenvolvimento , Via de Sinalização Wnt/genética , beta Catenina/genética
17.
Methods Mol Biol ; 469: 69-84, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19109704

RESUMO

Cnidarians are simple metazoans with only two body layers and a primitive nervous system. They are famous for their nearly indefinite regeneration capacity. Recent work has identified most of the Wnt subfamilies and Wnt antagonists known from vertebrates in this basal animal model. Wnt signaling and BMP signaling have been shown to act in Hydra pattern formation and regeneration. Because recent genomic work in Hydra and Nematostella revealed many genes for vertebrate signaling pathways and transcription factors to be present in this more than 500 Myr-year-old phylum, future work will focus on the function and expression of these genes in Hydra pattern formation and regeneration. This chapter presents an in situ hybridization protocol, which is largely based on a lab protocol of the Bode lab that has proven to be extremely useful in the characterization of many developmental genes from Hydra.


Assuntos
Padronização Corporal , Regulação da Expressão Gênica , Hydra , Hibridização In Situ/métodos , Animais , Hydra/anatomia & histologia , Hydra/fisiologia , Transdução de Sinais/fisiologia
18.
Biol Open ; 6(8): 1137-1148, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28630355

RESUMO

Bending of 2D cell sheets is a fundamental morphogenetic mechanism during animal development and reproduction. A critical player driving cell shape during tissue bending is the actin cytoskeleton. Much of our current knowledge about actin dynamics in whole organisms stems from studies of embryonic development in bilaterian model organisms. Here, we have analyzed actin-based processes during asexual bud evagination in the simple metazoan Hydra We created transgenic Hydra strains stably expressing the actin marker Lifeact-GFP in either ectodermal or endodermal epitheliomuscular cells. We then combined live imaging with conventional phalloidin staining to directly follow actin reorganization. Bending of the Hydra epithelial double layer is initiated by a group of epitheliomuscular cells in the endodermal layer. These cells shorten their apical-basal axis and arrange their basal muscle processes in a circular configuration. We propose that this rearrangement generates the initial forces to bend the endoderm towards the ectoderm. Convergent tissue movement in both epithelial layers towards the centre of evagination then leads to elongation and extension of the bud along its new body axis. Tissue movement into the bud is associated with lateral intercalation of epithelial cells, remodelling of apical septate junctions, and rearrangement of basal muscle processes. The work presented here extends the analysis of morphogenetic mechanisms beyond embryonic tissues of model bilaterians.

19.
Gene Expr Patterns ; 5(3): 397-402, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15661646

RESUMO

C-jun NH(2)-terminal kinases (JNKs) represent a subgroup of mitogen-activated protein kinases (MAPKs). MAPK pathways are important regulators of cell proliferation, apoptosis, and gene expression throughout higher metazoans. We report here the characterization of a highly conserved Hydra JNK orthologue (HvJNK) that exhibits amino acid sequence identity of 61% as compared with human JNK1alpha. Phylogenetic analysis places HvJNK in a cluster with other metazoan JNKs. HvJNK is expressed in the nematocyte differentiation pathway. Double in situ hybridizations demonstrate overlapping expression with two other genes specifically activated during nematocyte differentiation, HyZic and Nowa, and restrict the phase of HvJNK expression to late proliferating nematoblasts and early differentiating nematocytes. Our results indicate that JNKs might have acted in cell differentiation in simple, pre-bilaterian animals.


Assuntos
Glicoproteínas/biossíntese , Hydra/enzimologia , Hydra/genética , Proteínas Quinases JNK Ativadas por Mitógeno/biossíntese , Sequência de Aminoácidos , Animais , Diferenciação Celular , Expressão Gênica , Humanos , Hibridização In Situ , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Dados de Sequência Molecular , Filogenia , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/biossíntese , Dedos de Zinco
20.
Biol Open ; 3(5): 397-407, 2014 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-24771621

RESUMO

The myc protooncogene encodes the Myc transcription factor which is the essential part of the Myc-Max network controlling fundamental cellular processes. Deregulation of myc leads to tumorigenesis and is a hallmark of many human cancers. We have recently identified homologs of myc (myc1, myc2) and max in the early diploblastic cnidarian Hydra and have characterized myc1 in detail. Here we show that myc2 is transcriptionally activated in the interstitial stem cell system. Furthermore, in contrast to myc1, myc2 expression is also detectable in proliferating epithelial stem cells throughout the gastric region. myc2 but not myc1 is activated in cycling precursor cells during early oogenesis and spermatogenesis, suggesting that the Hydra Myc2 protein has a possible non-redundant function in cell cycle progression. The Myc2 protein displays the principal design and properties of vertebrate Myc proteins. In complex with Max, Myc2 binds to DNA with similar affinity as Myc1-Max heterodimers. Immunoprecipitation of Hydra chromatin revealed that both Myc1 and Myc2 bind to the enhancer region of CAD, a classical Myc target gene in mammals. Luciferase reporter gene assays showed that Myc1 but not Myc2 transcriptionally activates the CAD promoter. Myc2 has oncogenic potential when tested in primary avian fibroblasts but to a lower degree as compared to Myc1. The identification of an additional myc gene in Cnidaria, a phylum that diverged prior to bilaterians, with characteristic expression patterns in tissue homeostasis and developmental processes suggests that principle functions of myc genes have arisen very early in metazoan evolution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA