Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 185
Filtrar
1.
Environ Res ; 250: 118493, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38378125

RESUMO

In low-income countries, a widespread but poorly studied type of cottage industry consists of melting scrap metal for making cookware. We assessed the exposure to lead (Pb) among artisanal workers, and their families, involved in manufacturing cookware from scrap metal. In a cross-sectional survey, we compared artisanal cookware manufacturing foundries with carpentry workshops (negative controls) and car battery repair workshops (positive controls), all located in residential areas, in Lubumbashi (DR Congo). We collected surface dust in the workspaces, and blood and urine samples among workers, as well as residents living in the cookware workshops. Trace elements were quantified in the samples by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). In surface dust, median Pb concentrations were higher in cookware foundries (347 mg/kg) than in carpentries (234 mg/kg) but lower than in battery repair workshops (22,000 mg/kg). In workers making the cookware (n = 24), geometric mean (GM) Pb blood cencentration was 118 µg/L [interquartile range (IQR) 78.4-204], i.e. nearly twice as high as among carpenters [60.2 µg/L (44.4-84.7), n = 33], and half the concentration of battery repair workers [255 µg/L (197-362), n = 23]. Resident children from the cookware foundries, had higher urinary Pb [6.2 µg/g creatinine (2.3-19.3), n = 6] than adults [2.3 (2.2-2.5), n = 3]. Our investigation confirms the high Pb hazard linked to car battery repair and reveals a high exposure to Pb among artisanal cookware manufacturers and their families, especially children, in residential areas of a city in a low-income country.


Assuntos
Monitoramento Biológico , Chumbo , Exposição Ocupacional , Humanos , Chumbo/sangue , Chumbo/urina , Chumbo/análise , Adulto , Estudos Transversais , Masculino , Exposição Ocupacional/análise , Feminino , Pessoa de Meia-Idade , Utensílios de Alimentação e Culinária , Adulto Jovem , Criança , Exposição Ambiental/análise , Adolescente , Poeira/análise , Pré-Escolar
2.
Part Fibre Toxicol ; 21(1): 8, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38409078

RESUMO

BACKGROUND: Inhalation of airborne particulate matter, such as silica and diesel exhaust particles, poses serious long-term respiratory and systemic health risks. Silica exposure can lead to silicosis and systemic autoimmune diseases, while DEP exposure is linked to asthma and cancer. Combined exposure to silica and DEP, common in mining, may have more severe effects. This study investigates the separate and combined effects of occupational-level silica and ambient-level DEP on lung injury, inflammation, and autoantibody formation in two genetically distinct mouse strains, thereby aiming at understanding the interplay between genetic susceptibility, particulate exposure, and disease outcomes. Silica and diesel exhaust particles were administered to mice via oropharyngeal aspiration. Assessments of lung injury and host response included in vivo lung micro-computed tomography, lung function tests, bronchoalveolar lavage fluid analysis including inflammatory cytokines and antinuclear antibodies, and histopathology with particle colocalization. RESULTS: The findings highlight the distinct effects of silica and diesel exhaust particles (DEP) on lung injury, inflammation, and autoantibody formation in C57BL/6J and NOD/ShiLtJ mice. Silica exposure elicited a well-established inflammatory response marked by inflammatory infiltrates, release of cytokines, and chemokines, alongside mild fibrosis, indicated by collagen deposition in the lungs of both C57BL/6J and NOD/ShilLtJ mice. Notably, these strains exhibited divergent responses in terms of respiratory function and lung volumes, as assessed through micro-computed tomography. Additionally, silica exposure induced airway hyperreactivity and elevated antinuclear antibody levels in bronchoalveolar lavage fluid, particularly prominent in NOD/ShiLtJ mice. Moreover, antinuclear antibodies correlated with extent of lung inflammation in NOD/ShiLTJ mice. Lung tissue analysis revealed DEP loaded macrophages and co-localization of silica and DEP particles. However, aside from contributing to airway hyperreactivity specifically in NOD/ShiLtJ mice, the ambient-level DEP did not significantly amplify the effects induced by silica. There was no evidence of synergistic or additive interaction between these specific doses of silica and DEP in inducing lung damage or inflammation in either of the mouse strains. CONCLUSION: Mouse strain variations exerted a substantial influence on the development of silica induced lung alterations. Furthermore, the additional impact of ambient-level DEP on these silica-induced effects was minimal.


Assuntos
Asma , Lesão Pulmonar , Camundongos , Animais , Emissões de Veículos/toxicidade , Lesão Pulmonar/patologia , Dióxido de Silício/toxicidade , Autoanticorpos/farmacologia , Anticorpos Antinucleares/farmacologia , Microtomografia por Raio-X , Camundongos Endogâmicos NOD , Camundongos Endogâmicos C57BL , Pulmão , Citocinas/genética , Líquido da Lavagem Broncoalveolar , Inflamação/patologia , Material Particulado/toxicidade
3.
Arch Toxicol ; 98(2): 493-505, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38148415

RESUMO

The use of laboratory animals in research has been extensively criticized. While most of the critique has been centered around the ethical aspect, also the economic and scientific aspects have been frequently mentioned as points of concern. As a result, the use of alternative methods has gradually become more enticing. The most used alternatives to laboratory animals are the 2D monolayer cell cultures. However, the limited translatability of these monolayer cell cultures to in vivo has led to the development of 3D cell cultures that are believed to better capture the in vivo physiology and pathology. Here we report on the development of a physiologically more relevant 3D cell model (spheroids) comprised of human bronchial epithelial (16HBE14o-) cells, for use in respiratory toxicity research. Culturing 16HBE14o-cells as hanging-drops led to the formation of stable spheroids which showed an increased expression of CLDN1 when compared to 2D monolayer cultured cells. In addition, cell-cycle analysis revealed an increased sub-G0 population and signs of G0/G1 arrest in spheroids. Afterwards, standard operating procedures (SOPs) were established, and existing protocols optimized, for compatibility with spheroids. Spheroids were successfully used to assess cytotoxicity, genotoxicity, apoptosis/necrosis, and oxidative stress after exposure to known cytotoxic or genotoxic compounds. The development of the bronchial epithelial spheroids and the establishment of SOPs can contribute to a more reliable toxicity assessment of chemicals and may aid in bridging the gap between in vivo and in vitro experiments.


Assuntos
Antineoplásicos , Esferoides Celulares , Animais , Humanos , Células Cultivadas , Técnicas de Cultura de Células/métodos
4.
Regul Toxicol Pharmacol ; 146: 105527, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38056706

RESUMO

The Opinion of the Scientific Committee on Health, Environmental and Emerging Risks advises the European Commission on whether the uses of titanium dioxide in toys and toy materials can be considered to be safe in light of the identified exposure, and the classification of titanium dioxide as carcinogenic category 2 after inhalation. Four toy products including casting kits, chalk, powder paints and white colour pencils containing various amounts of TiO2 as colouring agent were evaluated for inhalation risks. For the oral route, childrens' lip gloss/lipstick, finger paint and white colour pencils were evaluated. When it can be demonstrated with high certainty that no ultrafine fraction is present in pigmentary TiO2 preparations used in toys and toy materials, safe use with no or negligible risk for all products considered is indicated based on the exposure estimations of this Opinion. However, if an ultrafine fraction is assumed to be present, safe use is not indicated, except for white colour pencils.


Assuntos
Corantes , Titânio , Criança , Humanos , Jogos e Brinquedos , Saúde Ambiental
5.
Environ Res ; 237(Pt 1): 116886, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37597835

RESUMO

Within collaborative projects, such as the EU-funded Horizon 2020 EXIMIOUS project (Mapping Exposure-Induced Immune Effects: Connecting the Exposome and the Immunome), collection and analysis of large volumes of data pose challenges in the domain of data management, with regards to both ethical and legal aspects. However, researchers often lack the right tools and/or accurate understanding of the ethical/legal framework to independently address such challenges. With the guidance and support within and between the partner institutes (the researchers and the ethical and legal teams) in the EXIMIOUS project, we have been able to understand and solve most challenges during the first two project years. This has fed into the development of a Data Management Plan and the establishment of data management platforms in accordance with the ethical and legal framework laid down by the EU and the different national regulations of the partners involved. Through this elaborate exercise, we have acquired tools which allow us to make our research data FAIR (Findable, Accessible, Interoperable, and Reusable), while at the same time ensuring data privacy and security (GDPR compliant). Herein we share our experience of creating and managing the data workflow through an open research communication, with the aim of helping other researchers build their data management framework in their own projects. Based on the measures adopted in EXIMIOUS to ensure FAIR data management, we also put together a checklist "DMP CHECK" containing a series of recommendations based on our experience.

6.
Regul Toxicol Pharmacol ; 144: 105488, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37657743

RESUMO

Electronic cigarette is often promoted and perceived as an 'healthy' alternative compared to conventional cigarettes. However, growing body of evidence indicate the possible adverse health effect associated with e-cigarette. Here we reviewed the literature with a focus on metal exposure in relation to e-cigarette use and related toxicity endpoints. Twenty-nine studies were identified for full text screening after applying the screening criteria of which 5 in vitro studies and 11 epidemiological studies were included for data extraction. Cr, Cu, Ni, Sn are the most found metal in all studies. In vitro, metal from e-cigarette (liquid or aerosols) induced cytotoxicity, oxidative stress, genotoxicity and pro-inflammatory responses. It was observed that the presence of nicotine can influence metal-induced in vitro toxicity. Based on epidemiological studies, the metal burden in e-cigarette users showed to be elevated in different populations (including e.g. NHANES). However, most often such studies were limited by the missing user characteristics, and information of other potential sources of metal exposure. In general, metals from e-cigarette use can be associated with toxicity endpoints but to uncover the metal related hazard of e-cigarette in users, more detailed data on metals in vapors and e-liquids; user habits and user demographics are needed.

7.
Part Fibre Toxicol ; 19(1): 4, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34996462

RESUMO

BACKGROUND: Autoimmunity can result from the interplay between genetic background and effects of environmental and/or occupational exposure to hazardous materials. Several compounds, including silica dust, have been linked with systemic autoimmunity and systemic autoimmune diseases, based on epidemiological evidence. For asbestos, a strong link with systemic autoimmune diseases does not yet exist, however, several studies have documented features of autoimmunity following asbestos exposure. Even so, human studies are limited in their ability to identify and examine isolated exposures, making it difficult to demonstrate causation or to assess pathogenic mechanisms. Therefore, this systematic review examines the existing animal evidence regarding autoimmunity and exposure to silicates (silica and asbestos). METHODS: PubMed and EMBASE were systematically searched for peer-reviewed studies examining systemic autoimmune disease-related outcomes after silicate exposure in rodents. Literature databases were searched up to September 2021 for studies written in English and where the full text was available. Search strings were established based on a PECO (Population, Exposure, Comparator, Outcome) format. After title, abstract, and full-text screening, thirty-four studies were identified for further analysis. Quality assessment through ToxR tool and qualitative analysis of the results was performed. RESULTS: Although there was significant heterogeneity in the included studies in terms of exposure protocol and genetic background of the rodent models used, it was noted that both genetic background and exposure to silicates [(crystalline) silica and asbestos] are highly relevant to the development of (sub-) clinical systemic autoimmune disease. CONCLUSION: Parallels were observed between the findings from the animal (this review) and human (epidemiological) studies, arguing that experimental animal models are valuable tools for examining exacerbation or development of autoimmune disease after silicate exposure. However, genetic background and synergism between exposures should be considered in future studies.


Assuntos
Exposição Ocupacional , Roedores , Animais , Autoimunidade , Poeira , Exposição Ocupacional/efeitos adversos , Silicatos
8.
Arch Toxicol ; 96(5): 1141-1212, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35278105

RESUMO

Systemic exposure to nanoparticles (NPs) adversely affects different organs, including the nervous system. We systematically extracted data from publication on PubMed and Embase database up to the year 2020, and analyzed in vitro and in vivo neurotoxicity of 4 of the most well studied NPs (silver NPs, carbon-based NPs, iron NPs and silica NPs). A relatively good correlation was observed between in vitro and in vivo effects, including genotoxicity, oxidative stress, apoptosis and pro-inflammatory effects. However, crucial knowledge gap exists in current understanding of the underlying mechanisms. Some of the critical knowledge gaps and research needs identified in relation to neurotoxicity of nanoparticles include (1) lack of physio-chemical characteristics of NPs used, (2) cellular/tissue uptake of NP, (3) NP translocation across the blood-brain barrier (BBB), (4) Effect of exposure routes.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Síndromes Neurotóxicas , Barreira Hematoencefálica , Humanos , Nanopartículas Metálicas/toxicidade , Nanopartículas/toxicidade , Síndromes Neurotóxicas/etiologia , Estresse Oxidativo , Dióxido de Silício
9.
Adv Exp Med Biol ; 1357: 195-223, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35583646

RESUMO

The toxic effects of different forms of nanomaterials comprise a series of biological effects such as oxidative stress; DNA damage; inflammatory response; activation of nuclear transcription factors. Some of these are key characteristics of human carcinogens and have been considered for hazard identification of nanomaterials. In addition, epigenetic changes also play a key role in the multi-step sequential process of carcinogenesis. Epigenetic modifications may constitute changes in DNA methylation, histone modifications (methylation, acetylation etc), and changes in non-coding RNA, leading to an altered gene expression profile. In this chapter, we describe the state-of-the-art of epigenetic modifications induced by different nanomaterials, from a limited number of in vitro- in vivo and human studies, a majority of which is primarily focused on DNA methylation. We also highlight the potential challenges and future directions in the field of epigenetics research in nanomaterial toxicology.


Assuntos
Histonas , Nanoestruturas , Metilação de DNA , Epigênese Genética , Epigenômica , Histonas/genética , Histonas/metabolismo , Humanos , Nanoestruturas/toxicidade
10.
Respir Res ; 22(1): 224, 2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34372845

RESUMO

BACKGROUND: Sarcoidosis most commonly affects lungs and intrathoracic lymph nodes, but any other organ can be involved. In epidemiological studies, many occupational and environmental exposures have been linked to sarcoidosis but their relationship with the disease phenotype has barely been studied. OBJECTIVE: To investigate how occupational and environmental exposures prior to diagnosis relate to organ involvement in patients with sarcoidosis METHODS: We retrospectively studied patients seen at a sarcoidosis clinic between 2017 and 2020. Patients were included if they had a clinical presentation consistent with sarcoidosis and histologically confirmed epithelioid granulomas or had Löfgren syndrome. In a case-case analysis using multivariable logistic regression we calculated odds ratios (OR) of prespecified exposure categories (based on expert ascertainment) for cases with a given organ involvement versus cases without this organ involvement. RESULTS: We included 238 sarcoidosis patients. Sarcoidosis limited to pulmonary involvement was associated with exposure to inorganic dust prior to diagnosis (OR 2.11; 95% confidence interval [CI] 1.11-4.17). Patients with liver involvement had higher odds of contact with livestock (OR 3.68; 95% CI 0.91-12.7) or having jobs with close human contact (OR 4.33; 95% CI 1.57-11.3) than patients without liver involvement. Similar associations were found for splenic involvement (livestock: OR 4.94, 95% CI 1.46-16.1; close human contact: OR 3.78; 95% CI 1.47-9.46). Cardiac sarcoidosis was associated with exposure to reactive chemicals (OR 5.08; 95% CI 1.28-19.2) or livestock (OR 9.86; 95% CI 1.95-49.0). Active smokers had more ocular sarcoidosis (OR 3.26; 95% CI 1.33-7.79). CONCLUSIONS: Our study indicates that, in sarcoidosis patients, different exposures might be related to different organ involvements-hereby providing support for the hypothesis that sarcoidosis has more than one cause, each of which may promote a different disease phenotype.


Assuntos
Poeira , Exposição Ambiental/efeitos adversos , Pulmão/patologia , Linfonodos/patologia , Exposição Ocupacional/efeitos adversos , Sarcoidose Pulmonar/diagnóstico , Adulto , Animais , Feminino , Humanos , Gado , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Sarcoidose Pulmonar/epidemiologia , Sarcoidose Pulmonar/etiologia , Fumar/efeitos adversos , Fumar/epidemiologia
11.
Environ Health ; 20(1): 41, 2021 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-33838685

RESUMO

BACKGROUND: Air pollution is one of the world's leading mortality risk factors contributing to seven million deaths annually. COVID-19 pandemic has claimed about one million deaths in less than a year. However, it is unclear whether exposure to acute and chronic air pollution influences the COVID-19 epidemiologic curve. METHODS: We searched for relevant studies listed in six electronic databases between December 2019 and September 2020. We applied no language or publication status limits. Studies presented as original articles, studies that assessed risk, incidence, prevalence, or lethality of COVID-19 in relation with exposure to either short-term or long-term exposure to ambient air pollution were included. All patients regardless of age, sex and location diagnosed as having COVID-19 of any severity were taken into consideration. We synthesised results using harvest plots based on effect direction. RESULTS: Included studies were cross-sectional (n = 10), retrospective cohorts (n = 9), ecological (n = 6 of which two were time-series) and hypothesis (n = 1). Of these studies, 52 and 48% assessed the effect of short-term and long-term pollutant exposure, respectively and one evaluated both. Pollutants mostly studied were PM2.5 (64%), NO2 (50%), PM10 (43%) and O3 (29%) for acute effects and PM2.5 (85%), NO2 (39%) and O3 (23%) then PM10 (15%) for chronic effects. Most assessed COVID-19 outcomes were incidence and mortality rate. Acutely, pollutants independently associated with COVID-19 incidence and mortality were first PM2.5 then PM10, NO2 and O3 (only for incident cases). Chronically, similar relationships were found for PM2.5 and NO2. High overall risk of bias judgments (86 and 39% in short-term and long-term exposure studies, respectively) was predominantly due to a failure to adjust aggregated data for important confounders, and to a lesser extent because of a lack of comparative analysis. CONCLUSION: The body of evidence indicates that both acute and chronic exposure to air pollution can affect COVID-19 epidemiology. The evidence is unclear for acute exposure due to a higher level of bias in existing studies as compared to moderate evidence with chronic exposure. Public health interventions that help minimize anthropogenic pollutant source and socio-economic injustice/disparities may reduce the planetary threat posed by both COVID-19 and air pollution pandemics.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Poluição do Ar/efeitos adversos , COVID-19/epidemiologia , COVID-19/mortalidade , Exposição Ambiental/efeitos adversos , Humanos , Incidência , Dióxido de Nitrogênio/efeitos adversos , Ozônio/efeitos adversos , Material Particulado/efeitos adversos , Prevalência , Prognóstico , Dióxido de Enxofre/efeitos adversos
12.
Am J Physiol Lung Cell Mol Physiol ; 319(4): L641-L651, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32726143

RESUMO

Cobalt has been associated with allergic contact dermatitis and occupational asthma. However, the link between skin exposure and lung responses to cobalt is currently unknown. We investigated the effect of prior dermal sensitization to cobalt on pulmonary physiological and immunological responses after subsequent challenge with cobalt via the airways. BALB/c mice received epicutaneous applications (25 µL/ear) with 5% CoCl2*6H2O (Co) or the vehicle (Veh) dimethyl sulfoxide (DMSO) twice; they then received oropharyngeal challenges with 0.05% CoCl2*6H2O or saline five times, thereby obtaining four groups: Veh/Veh, Co/Veh, Veh/Co, and Co/Co. To detect early respiratory responses noninvasively, we performed sequential in vivo microcomputed tomography (µCT). One day after the last challenge, we assessed airway hyperreactivity (AHR) to methacholine, inflammation in bronchoalveolar lavage (BAL), innate lymphoid cells (ILCs) and dendritic cells (DCs) in the lungs, and serum IgE. Compared with the Veh/Veh group, the Co/Co group showed increased µCT-derived lung response, increased AHR to methacholine, mixed neutrophilic and eosinophilic inflammation, elevated monocyte chemoattractant protein-1 (MCP-1), and elevated keratinocyte chemoattractant (KC) in BAL. Flow cytometry in the Co/Co group demonstrated increased DC, type 1 and type 2 conventional DC (cDC1/cDC2), monocyte-derived DC, increased ILC group 2, and natural cytotoxicity receptor-ILC group 3. The Veh/Co group showed only increased AHR to methacholine and elevated MCP-1 in BAL, whereas the Co/Veh group showed increased cDC1 and ILC2 in lung. We conclude that dermal sensitization to cobalt may increase the susceptibility of the lungs to inhaling cobalt. Mechanistically, this enhanced susceptibility involves changes in pulmonary DCs and ILCs.


Assuntos
Hiper-Reatividade Brônquica/tratamento farmacológico , Cobalto/farmacologia , Inflamação/tratamento farmacológico , Linfócitos/efeitos dos fármacos , Animais , Hiper-Reatividade Brônquica/imunologia , Lavagem Broncoalveolar/métodos , Líquido da Lavagem Broncoalveolar/imunologia , Modelos Animais de Doenças , Inflamação/induzido quimicamente , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Linfócitos/imunologia , Cloreto de Metacolina/metabolismo , Camundongos Endogâmicos BALB C
13.
Small ; 16(36): e2003303, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32700469

RESUMO

Nanotechnologies have reached maturity and market penetration that require nano-specific changes in legislation and harmonization among legislation domains, such as the amendments to REACH for nanomaterials (NMs) which came into force in 2020. Thus, an assessment of the components and regulatory boundaries of NMs risk governance is timely, alongside related methods and tools, as part of the global efforts to optimise nanosafety and integrate it into product design processes, via Safe(r)-by-Design (SbD) concepts. This paper provides an overview of the state-of-the-art regarding risk governance of NMs and lays out the theoretical basis for the development and implementation of an effective, trustworthy and transparent risk governance framework for NMs. The proposed framework enables continuous integration of the evolving state of the science, leverages best practice from contiguous disciplines and facilitates responsive re-thinking of nanosafety governance to meet future needs. To achieve and operationalise such framework, a science-based Risk Governance Council (RGC) for NMs is being developed. The framework will provide a toolkit for independent NMs' risk governance and integrates needs and views of stakeholders. An extension of this framework to relevant advanced materials and emerging technologies is also envisaged, in view of future foundations of risk research in Europe and globally.


Assuntos
Nanoestruturas , Nanotecnologia , Medição de Risco , Nanoestruturas/toxicidade , Nanotecnologia/normas , Nanotecnologia/tendências , Medição de Risco/normas
14.
Nicotine Tob Res ; 22(5): 613-618, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-31329942

RESUMO

The European Commission has established a priority list of 15 additives contained in cigarettes and roll-your-own tobacco subject to enhanced reporting obligations. The European Union (EU) Tobacco Products Directive (TPD) prescribes that Member States shall require manufacturers and importers of tobacco products to carry out comprehensive studies on these additives to assess their contribution to any of the properties listed in Article 6 of the TPD: toxicity or addictiveness, characterizing flavor, inhalation facilitation, nicotine uptake, and carcinogenic, mutagenic, or toxic for reproduction. The Scientific Committee on Health, Environmental, and Emerging Risks (SCHEER) has provided guidance on the type and criteria for comprehensive studies, and on the most suitable methodologies to test these 15 tobacco additives as well as additives on future updated lists. The SCHEER proposes a stepwise strategy as the most pragmatic and efficient way to assess the effects of tobacco additives. In addition to proposing specific steps and tests to be considered by industry, some general criteria were also identified such as no comparative testing (testing cigarettes with and without the additive) and no animal studies. As tobacco additives have no benefits for health, but rather may promote use of and addiction to an extremely toxic product, a risk-benefit analysis is not the appropriate paradigm for assessing the additive. When comprehensive studies confirm that additives have any of the properties listed in Article 6 of the TPD, regulatory actions should be considered. If uncertainties cannot be solved by comprehensive studies, the SCHEER recommends that the assessors consider the worst-case evaluation. IMPLICATIONS: In this article, the SCHEER proposes a stepwise strategy to assess (1) the toxic and addictive effects, (2) the characterizing flavor, and (3) facilitating inhalation properties of tobacco additives. The proposed steps and tests provide guidance to (1) Member State on which comprehensive studies should be requested and (2) tobacco industry on which strategy of testing should be applied to address the request and to prepare reports to be sent to the relevant authorities for the evaluation of tobacco additives "safety" to comply with the Tobacco Products Directive 2014/40/EU.


Assuntos
Comportamento Aditivo/prevenção & controle , Substâncias Perigosas/normas , Indústria do Tabaco/normas , Produtos do Tabaco/normas , Saúde Ambiental , União Europeia , Prova Pericial , Humanos , Notificação de Abuso
15.
Part Fibre Toxicol ; 17(1): 6, 2020 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-31996255

RESUMO

BACKGROUND: Li-ion batteries (LIB) are used in most portable electronics. Among a wide variety of materials, LiCoO2 (LCO) is one of the most used for the cathode of LIB. LCO particles induce oxidative stress in mouse lungs due to their Co content, and have a strong inflammatory potential. In this study, we assessed the mutagenic potential of LCO particles in lung cells in comparison to another particulate material used in LIB, LTO (Li4Ti5O12), which has a low inflammatory potential compared to LCO particles. RESULTS: We assessed the mutagenic potential of LCO and LTO particles in vitro by performing a cytokinesis-block micronucleus (MN) assay with rat lung epithelial cells (RLE), as well as in vivo in alveolar type II epithelial (AT-II) cells. LCO particles induced MN in vitro at non-cytotoxic concentrations and in vivo at non-inflammatory doses, indicating a primary genotoxic mechanism. LTO particles did not induce MN. Electron paramagnetic resonance and terephthalate assays showed that LCO particles produce hydroxyl radicals (•OH). Catalase inhibits this •OH production. In an alkaline comet assay with the oxidative DNA damage repair enzyme human 8-oxoguanine DNA glycosylase 1, LCO particles induced DNA strand breaks and oxidative lesions. The addition of catalase reduced the frequency of MN induced by LCO particles in vitro. CONCLUSIONS: We report the mutagenic activity of LCO particles used in LIB in vitro and in vivo. Our data support the role of Co(II) ions released from these particles in their primary genotoxic activity which includes the formation of •OH by a Fenton-like reaction, oxidative DNA lesions and strand breaks, thus leading to chromosomal breaks and the formation of MN. Documenting the genotoxic potential of the other LIB particles, especially those containing Co and/or Ni, is therefore needed to guarantee a safe and sustainable development of LIB.


Assuntos
Células Epiteliais Alveolares/efeitos dos fármacos , Cobalto/toxicidade , Dano ao DNA , Radical Hidroxila/metabolismo , Micronúcleos com Defeito Cromossômico/induzido quimicamente , Óxidos/toxicidade , Material Particulado/toxicidade , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Animais , Líquido da Lavagem Broncoalveolar/química , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cobalto/química , Fontes de Energia Elétrica , Feminino , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Óxidos/química , Tamanho da Partícula , Material Particulado/química , Ratos , Ratos Wistar
16.
Part Fibre Toxicol ; 17(1): 10, 2020 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-32101144

RESUMO

BACKGROUND: The terms agglomerates and aggregates are frequently used in the regulatory definition(s) of nanomaterials (NMs) and hence attract attention in view of their potential influence on health effects. However, the influence of nanoparticle (NP) agglomeration and aggregation on toxicity is poorly understood although it is strongly believed that smaller the size of the NPs greater the toxicity. A toxicologically relevant definition of NMs is therefore not yet available, which affects not only the risk assessment process but also hinders the regulation of nano-products. In this study, we assessed the influence of NP agglomeration on their toxicity/biological responses in vitro and in vivo. RESULTS: We tested two TiO2 NPs with different primary sizes (17 and 117 nm) and prepared ad-hoc suspensions composed of small or large agglomerates with similar dispersion medium composition. For in vitro testing, human bronchial epithelial (HBE), colon epithelial (Caco2) and monocytic (THP-1) cell lines were exposed to these suspensions for 24 h and endpoints such as cytotoxicity, total glutathione, epithelial barrier integrity, inflammatory mediators and DNA damage were measured. Large agglomerates of 17 nm TiO2 induced stronger responses than small agglomerates for glutathione depletion, IL-8 and IL-1ß increase, and DNA damage in THP-1, while no effect of agglomeration was observed with 117 nm TiO2. In vivo, C57BL/6JRj mice were exposed via oropharyngeal aspiration or oral gavage to TiO2 suspensions and, after 3 days, biological parameters including cytotoxicity, inflammatory cell recruitment, DNA damage and biopersistence were measured. Mainly, we observed that large agglomerates of 117 nm TiO2 induced higher pulmonary responses in aspirated mice and blood DNA damage in gavaged mice compared to small agglomerates. CONCLUSION: Agglomeration of TiO2 NPs influences their toxicity/biological responses and, large agglomerates do not appear less active than small agglomerates. This study provides a deeper insight on the toxicological relevance of NP agglomerates and contributes to the establishment of a toxicologically relevant definition for NMs.


Assuntos
Dano ao DNA , Células Epiteliais/efeitos dos fármacos , Nanopartículas/toxicidade , Titânio/toxicidade , Administração Oral , Animais , Líquido da Lavagem Broncoalveolar/química , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Feminino , Humanos , Exposição por Inalação/efeitos adversos , Camundongos Endogâmicos C57BL , Nanopartículas/química , Tamanho da Partícula , Propriedades de Superfície , Células THP-1 , Titânio/química
17.
Part Fibre Toxicol ; 17(1): 1, 2020 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-31900181

RESUMO

BACKGROUND: The regulatory definition(s) of nanomaterials (NMs) frequently uses the term 'agglomerates and aggregates' (AA) despite the paucity of evidence that AA are significantly relevant from a nanotoxicological perspective. This knowledge gap greatly affects the safety assessment and regulation of NMs, such as synthetic amorphous silica (SAS). SAS is used in a large panel of industrial applications. They are primarily produced as nano-sized particles (1-100 nm in diameter) and considered safe as they form large aggregates (> 100 nm) during the production process. So far, it is indeed believed that large aggregates represent a weaker hazard compared to their nano counterpart. Thus, we assessed the impact of SAS aggregation on in vitro cytotoxicity/biological activity to address the toxicological relevance of aggregates of different sizes. RESULTS: We used a precipitated SAS dispersed by different methods, generating 4 ad-hoc suspensions with different aggregate size distributions. Their effect on cell metabolic activity, cell viability, epithelial barrier integrity, total glutathione content and, IL-8 and IL-6 secretion were investigated after 24 h exposure in human bronchial epithelial (HBE), colon epithelial (Caco2) and monocytic cells (THP-1). We observed that the de-aggregated suspension (DE-AGGR), predominantly composed of nano-sized aggregates, induced stronger effects in all the cell lines than the aggregated suspension (AGGR). We then compared DE-AGGR with 2 suspensions fractionated from AGGR: the precipitated fraction (PREC) and the supernatant fraction (SuperN). Very large aggregates in PREC were found to be the least cytotoxic/biologically active compared to other suspensions. SuperN, which contains aggregates larger in size (> 100 nm) than in DE-AGGR but smaller than PREC, exhibited similar activity as DE-AGGR. CONCLUSION: Overall, aggregation resulted in reduced toxicological activity of SAS. However, when comparing aggregates of different sizes, it appeared that aggregates > 100 nm were not necessarily less cytotoxic than their nano-sized counterparts. This study suggests that aggregates of SAS are toxicologically relevant for the definition of NMs.


Assuntos
Células Epiteliais/efeitos dos fármacos , Nanopartículas/toxicidade , Dióxido de Silício/toxicidade , Células CACO-2 , Técnicas de Cultura de Células , Sobrevivência Celular/efeitos dos fármacos , Células Epiteliais/metabolismo , Glutationa/metabolismo , Humanos , Nanopartículas/química , Tamanho da Partícula , Dióxido de Silício/química , Propriedades de Superfície , Suspensões , Células THP-1
18.
Eur J Oral Sci ; 128(3): 233-240, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32378254

RESUMO

The aim of this study was to investigate the protection efficiency of two types of face masks against composite dust and to characterize the particles that penetrated through the masks. Composite dust was created by grinding a commercial nano-filled composite in a plexiglass box without using water cooling or high vacuum evacuation, in order to obtain a worst-case exposure. Dust particles were collected using a personal inhalable aerosol sampler (IOM) fixed inside a custom-made phantom head. Surgical and filtering facepiece (FFP3) masks were tested, and the situation without a mask served as control. The IOM sampler contained a cassette with two filters to collect large inhalable (4-100 µm) and respirable dust particles (<4 µm). The amount of particles was determined gravimetrically by weighing filters before and after composite grinding, and further characterized by electron microscopy. Particle collection for both inhalable and respirable dust was the highest when no mask was used, and the lowest with the use of a FFP3 mask. Different sizes and shapes of particles were observed, with the largest particles (>1 µm) being seen when no mask was applied, whereas only nanoparticles could be detected when either type of face mask was applied. Even though FFP3 masks showed a higher filtration efficacy than surgical masks of the inhalable dust fraction, penetration of a small respirable particle fraction was inevitable for both masks.


Assuntos
Poeira , Exposição Ocupacional , Aerossóis , Filtração , Máscaras , Exposição Ocupacional/análise , Tamanho da Partícula
19.
Clin Oral Investig ; 24(7): 2403-2414, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31811493

RESUMO

OBJECTIVE: To evaluate the collection efficiency of water spray on the release of airborne composite particles during grinding of composite materials. MATERIALS AND METHODS: Composite sticks (L:35 mm × W:5.4 mm × H:1.6 mm) of seven commercial dental composites were ground with a rough diamond bur (grain size 100 µm, speed 200,000 rpm). All experiments were performed in an enclosed 1-m3 chamber with low particulate background (< 1,000 #/cm3), and airborne particles were evaluated based on their electrical mobility. The number size distribution was determined by scanning mobility particle sizer (SMPS). Particles were collected by an electrostatic precipitator (ESP), and were ultramorphologically and chemically analyzed by a transmission electron microscope equipped with energy-dispersive X-ray spectroscopy (TEM-EDS). RESULTS: SMPS measurements confirmed that both dry and wet grinding generated high concentrations of nanoparticles particles with the highest concentration recorded during the last minute of grinding (1.80 × 106 - 3.29 × 106#/cm3), after which a gradual decline in particle concentration took place. Nevertheless, grinding with water spray resulted in a significant reduction of the number of released particles (5.6 × 105 - 1.37 × 106#/cm3). The smallest particle diameter was recorded during the last minute of grinding followed by a continuous growth for every next measurement. TEM of composite dust revealed a high concentration of particles varying in both size and shape. CONCLUSIONS: Regardless of whether the water cooling spray system was used during bur manipulation of composite materials, predominately nanoparticles were released. However, the particle concentrations were significantly decreased with water spray. CLINICAL RELEVANCE: Since water spray might not be sufficient in nanoparticle collection, special care should be taken to prevent inhalation of composite dust.


Assuntos
Poeira , Nanopartículas , Tamanho da Partícula , Água
20.
Toxicol Ind Health ; 36(10): 823-834, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32840447

RESUMO

The airway epithelium is continuously exposed to environmental irritants, which can cause adverse effects such as irritant-induced asthma (IIA). Mast cells are located near airway epithelia and are able to respond to a variety of stimuli. We aimed to investigate whether mast cells influence the response of the epithelium upon irritant exposure. Two cell lines and three different seeding conditions, that is, bronchial epithelial cells (16HBE) only, 16HBE with mast cells (HMC-1's) basolaterally, and 16HBE with HMC-1's apically, were established. Upon exposure to the environmental irritants, graphene (G), graphene oxide (GO), diesel exhaust particles (DEPs) or hypochlorite (ClO-), transepithelial electrical resistance (TEER) and paracellular flux of fluorescent-labeled dextrans were determined, along with the release of mediators. Identical experiments were conducted with the Ca2+ ionophore ionomycin. Exposure to G and GO induced a significant and permanent decrease of approximately 70% in TEER after 3 h of exposure, whereas DEP and ClO- exposure resulted in a transient decrease of approximately 20% in TEER. This response pattern was similar in all the different seeding conditions. After 24 h of exposure, fluorescein isothiocyanate-dextran transport was 10-fold greater for G and 5-fold greater for GO in each of the tested seeding conditions, while DEP and ClO- induced no change compared to the control. Upon exposure to the irritants, 16HBE did not release thymic stromal lymphopoietin, interleukin 33 (IL-33), or IL-1α, and HMC-1 cells did not release histamine, IL-6, or IL-8. Epithelial barrier integrity upon treatment with ionomycin was not affected by the presence of HMC-1 cells. A limited amount of IL-6 and IL-8 was released by ionomycin-exposed HMC-1 cells. To conclude, we found that the studied environmental irritants do not directly or indirectly activate HMC-1 cells. These mast cells did not influence the epithelial barrier function upon environmental exposure, and thus currently do not provide additional information for the underlying mechanism of IIA.


Assuntos
Células Cultivadas/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Grafite/toxicidade , Pneumopatias/induzido quimicamente , Pneumopatias/fisiopatologia , Mastócitos/efeitos dos fármacos , Sistema Respiratório/efeitos dos fármacos , Emissões de Veículos/toxicidade , Poluentes Atmosféricos/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Variação Genética , Genótipo , Humanos , Irritantes/toxicidade , Doenças Profissionais/induzido quimicamente , Doenças Profissionais/fisiopatologia , Exposição Ocupacional/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA