Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Neurobiol Dis ; 174: 105887, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36209950

RESUMO

We have previously reported that the single transmembrane protein Dipeptidyl Peptidase Like 6 (DPP6) impacts neuronal and synaptic development. DPP6-KO mice are impaired in hippocampal-dependent learning and memory and exhibit smaller brain size. Recently, we have described novel structures in hippocampal area CA1 in aging mice, apparently derived from degenerating presynaptic terminals, that are significantly more prevalent in DPP6-KO mice compared to WT mice of the same age and that these structures were observed earlier in development in DPP6-KO mice. These novel structures appear as clusters of large puncta that colocalize NeuN, synaptophysin, and chromogranin A, and also partially label for MAP2, amyloid ß, APP, α-synuclein, and phosphorylated tau, with synapsin-1 and VGluT1 labeling on their periphery. In this current study, using immunofluorescence and electron microscopy, we confirm that both APP and amyloid ß are prevalent in these structures; and we show with immunofluorescence the presence of similar structures in humans with Alzheimer's disease. Here we also found evidence that aging DPP6-KO mutants show additional changes related to Alzheimer's disease. We used in vivo MRI to show reduced size of the DPP6-KO brain and hippocampus. Aging DPP6-KO hippocampi contained fewer total neurons and greater neuron death and had diagnostic biomarkers of Alzheimer's disease present including accumulation of amyloid ß and APP and increase in expression of hyper-phosphorylated tau. The amyloid ß and phosphorylated tau pathologies were associated with neuroinflammation characterized by increases in microglia and astrocytes. And levels of proinflammatory or anti-inflammatory cytokines increased in aging DPP6-KO mice. We finally show that aging DPP6-KO mice display circadian dysfunction, a common symptom of Alzheimer's disease. Together these results indicate that aging DPP6-KO mice show symptoms of enhanced neurodegeneration reminiscent of dementia associated with a novel structure resulting from synapse loss and neuronal death. This study continues our laboratory's work in discerning the function of DPP6 and here provides compelling evidence of a direct role of DPP6 in Alzheimer's disease.


Assuntos
Doença de Alzheimer , Humanos , Camundongos , Animais , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Envelhecimento/patologia , Hipocampo/metabolismo , Sinapses/metabolismo , Camundongos Transgênicos , Proteínas tau/genética , Proteínas tau/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Canais de Potássio/metabolismo
2.
Int J Mol Sci ; 23(16)2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36012450

RESUMO

The concerted action of voltage-gated ion channels in the brain is fundamental in controlling neuronal physiology and circuit function. Ion channels often associate in multi-protein complexes together with auxiliary subunits, which can strongly influence channel expression and function and, therefore, neuronal computation. One such auxiliary subunit that displays prominent expression in multiple brain regions is the Dipeptidyl aminopeptidase-like protein 6 (DPP6). This protein associates with A-type K+ channels to control their cellular distribution and gating properties. Intriguingly, DPP6 has been found to be multifunctional with an additional, independent role in synapse formation and maintenance. Here, we feature the role of DPP6 in regulating neuronal function in the context of its modulation of A-type K+ channels as well as its independent involvement in synaptic development. The prevalence of DPP6 in these processes underscores its importance in brain function, and recent work has identified that its dysfunction is associated with host of neurological disorders. We provide a brief overview of these and discuss research directions currently underway to advance our understanding of the contribution of DPP6 to their etiology.


Assuntos
Dipeptidil Peptidases e Tripeptidil Peptidases , Canais de Potássio Shal , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Proteínas Interatuantes com Canais de Kv/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Canais de Potássio Shal/metabolismo
3.
J Neurosci ; 39(38): 7453-7464, 2019 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-31350260

RESUMO

Fragile X syndrome (FXS) is an inherited intellectual impairment that results from the loss of fragile X mental retardation protein (FMRP), an mRNA binding protein that regulates mRNA translation at synapses. The absence of FMRP leads to neuronal and circuit-level hyperexcitability that is thought to arise from the aberrant expression and activity of voltage-gated ion channels, although the identification and characterization of these ion channels have been limited. Here, we show that FMRP binds the mRNA of the R-type voltage-gated calcium channel Cav2.3 in mouse brain synaptoneurosomes and represses Cav2.3 translation under basal conditions. Consequently, in hippocampal neurons from male and female FMRP KO mice, we find enhanced Cav2.3 protein expression by western blotting and abnormally large R currents in whole-cell voltage-clamp recordings. In agreement with previous studies showing that FMRP couples Group I metabotropic glutamate receptor (GpI mGluR) signaling to protein translation, we find that GpI mGluR stimulation results in increased Cav2.3 translation and R current in hippocampal neurons which is disrupted in FMRP KO mice. Thus, FMRP serves as a key translational regulator of Cav2.3 expression under basal conditions and in response to GpI mGluR stimulation. Loss of regulated Cav2.3 expression could underlie the neuronal hyperactivity and aberrant calcium spiking in FMRP KO mice and contribute to FXS, potentially serving as a novel target for future therapeutic strategies.SIGNIFICANCE STATEMENT Patients with fragile X syndrome (FXS) exhibit signs of neuronal and circuit hyperexcitability, including anxiety and hyperactive behavior, attention deficit disorder, and seizures. FXS is caused by the loss of fragile X mental retardation protein (FMRP), an mRNA binding protein, and the neuronal hyperexcitability observed in the absence of FMRP likely results from its ability to regulate the expression and activity of voltage-gated ion channels. Here we find that FMRP serves as a key translational regulator of the voltage-gated calcium channel Cav2.3 under basal conditions and following activity. Cav2.3 impacts cellular excitability and calcium signaling, and the alterations in channel translation and expression observed in the absence of FMRP could contribute to the neuronal hyperactivity that underlies FXS.


Assuntos
Canais de Cálcio Tipo R/metabolismo , Sinalização do Cálcio/fisiologia , Proteínas de Transporte de Cátions/metabolismo , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Biossíntese de Proteínas/fisiologia
4.
J Biol Chem ; 294(10): 3683-3695, 2019 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-30622142

RESUMO

The Kv4 family of A-type voltage-gated K+ channels regulates the excitability in hippocampal pyramidal neuron dendrites and are key determinants of dendritic integration, spike timing-dependent plasticity, long-term potentiation, and learning. Kv4.2 channel expression is down-regulated following hippocampal seizures and in epilepsy, suggesting A-type currents as therapeutic targets. In addition to pore-forming Kv4 subunits, modulatory auxiliary subunits called K+ channel-interacting proteins (KChIPs) modulate Kv4 expression and activity and are required to recapitulate native hippocampal A-type currents in heterologous expression systems. KChIP mRNAs contain multiple start sites and alternative exons that generate considerable N-terminal variation and functional diversity in shaping Kv4 currents. As members of the EF-hand domain-containing neuronal Ca2+ sensor protein family, KChIP auxiliary proteins may convey Ca2+ sensitivity upon Kv4 channels; however, to what degree intracellular Ca2+ regulates KChIP-Kv4.2 complexes is unclear. To answer this question, we expressed KChIP2 with Kv4.2 in HEK293T cells, and, with whole-cell patch-clamp electrophysiology, measured an ∼1.5-fold increase in Kv4.2 current density in the presence of elevated intracellular Ca2+ Intriguingly, the Ca2+ regulation of Kv4 current was specific to KChIP2b and KChIP2c splice isoforms that lack a putative polybasic domain that is present in longer KChIP2a1 and KChIP2a isoforms. Site-directed acidification of the basic residues within the polybasic motif of KChIP2a1 rescued Ca2+-mediated regulation of Kv4 current density. These results support divergent Ca2+ regulation of Kv4 channels mediated by alternative splicing of KChIP2 isoforms. They suggest that distinct KChIP-Kv4 interactions may differentially control excitability and function of hippocampal dendrites.


Assuntos
Processamento Alternativo , Cálcio/metabolismo , Proteínas Interatuantes com Canais de Kv/química , Proteínas Interatuantes com Canais de Kv/metabolismo , Canais de Potássio Shal/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Dendritos/metabolismo , Fenômenos Eletrofisiológicos , Células HEK293 , Hipocampo/citologia , Humanos , Interações Hidrofóbicas e Hidrofílicas , Espaço Intracelular/metabolismo , Cinética , Proteínas Interatuantes com Canais de Kv/genética , Domínios Proteicos , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
5.
Hum Mol Genet ; 27(4): 589-600, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29267967

RESUMO

FRMPD4 (FERM and PDZ Domain Containing 4) is a neural scaffolding protein that interacts with PSD-95 to positively regulate dendritic spine morphogenesis, and with mGluR1/5 and Homer to regulate mGluR1/5 signaling. We report the genetic and functional characterization of 4 FRMPD4 deleterious mutations that cause a new X-linked intellectual disability (ID) syndrome. These mutations were found to be associated with ID in ten affected male patients from four unrelated families, following an apparent X-linked mode of inheritance. Mutations include deletion of an entire coding exon, a nonsense mutation, a frame-shift mutation resulting in premature termination of translation, and a missense mutation involving a highly conserved amino acid residue neighboring FRMPD4-FERM domain. Clinical features of these patients consisted of moderate to severe ID, language delay and seizures alongside with behavioral and/or psychiatric disturbances. In-depth functional studies showed that a frame-shift mutation, FRMPD4p.Cys618ValfsX8, results in a disruption of FRMPD4 binding with PSD-95 and HOMER1, and a failure to increase spine density in transfected hippocampal neurons. Behavioral studies of frmpd4-KO mice identified hippocampus-dependent spatial learning and memory deficits in Morris Water Maze test. These findings point to an important role of FRMPD4 in normal cognitive development and function in humans and mice, and support the hypothesis that FRMPD4 mutations cause ID by disrupting dendritic spine morphogenesis in glutamatergic neurons.


Assuntos
Espinhas Dendríticas/metabolismo , Deficiência Intelectual/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Adolescente , Adulto , Idoso , Éxons/genética , Feminino , Mutação da Fase de Leitura/genética , Humanos , Masculino , Pessoa de Meia-Idade , Morfogênese/genética , Morfogênese/fisiologia , Mutação/genética , Neurogênese/genética , Neurogênese/fisiologia , Linhagem , Adulto Jovem
6.
Mol Cell Neurosci ; 98: 121-130, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31212013

RESUMO

Kv4.2 voltage-gated K+ channel subunits, the primary source of the somatodendritic A-type K+ current in CA1 pyramidal neurons of the hippocampus, play important roles in regulating dendritic excitability and plasticity. To better study the trafficking and subcellular distribution of Kv4.2, we created and characterized a novel Kv4.2 construct encoding a bungarotoxin binding site in the extracellular S3-S4 linker region of the α-subunit. When expressed, this construct can be visualized in living cells after staining with rhodamine-conjugated bungarotoxin. We validated the utility of this construct by visualizing the spontaneous internalization and insertion of Kv4.2 in HEK 293T cells. We further report that Kv4.2 colocalized with several endosome markers in HEK 293T cells. In addition, Kv4.2 internalization is significantly impaired by mitogen-activated protein kinase (MAPK) inhibitors in transfected primary hippocampal neurons. Therefore, this newly developed BBS-Kv4.2 construct provides a novel and powerful tool for studying surface Kv4.2 channel localization and trafficking.


Assuntos
Bungarotoxinas/farmacologia , Canais de Potássio Shal/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Sítios de Ligação , Células Cultivadas , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Células HEK293 , Hipocampo/citologia , Humanos , Proteínas Interatuantes com Canais de Kv/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ligação Proteica , Inibidores de Proteínas Quinases/farmacologia , Transporte Proteico , Ratos , Canais de Potássio Shal/química , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores
7.
Int J Mol Sci ; 21(16)2020 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-32824677

RESUMO

The subthreshold, transient A-type K+ current is a vital regulator of the excitability of neurons throughout the brain. In mammalian hippocampal pyramidal neurons, this current is carried primarily by ion channels comprising Kv4.2 α-subunits. These channels occupy the somatodendritic domains of these principle excitatory neurons and thus regulate membrane voltage relevant to the input-output efficacy of these cells. Owing to their robust control of membrane excitability and ubiquitous expression in the hippocampus, their dysfunction can alter network stability in a manner that manifests in recurrent seizures. Indeed, growing evidence implicates these channels in intractable epilepsies of the temporal lobe, which underscores the importance of determining the molecular mechanisms underlying their regulation and contribution to pathologies. Here, we describe the role of p38 kinase phosphorylation of a C-terminal motif in Kv4.2 in modulating hippocampal neuronal excitability and behavioral seizure strength. Using a combination of biochemical, single-cell electrophysiology, and in vivo seizure techniques, we show that kainic acid-induced seizure induces p38-mediated phosphorylation of Thr607 in Kv4.2 in a time-dependent manner. The pharmacological and genetic disruption of this process reduces neuronal excitability and dampens seizure intensity, illuminating a cellular cascade that may be targeted for therapeutic intervention to mitigate seizure intensity and progression.


Assuntos
Convulsões/metabolismo , Canais de Potássio Shal/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Potenciais de Ação , Motivos de Aminoácidos , Animais , Ondas Encefálicas , Feminino , Células HEK293 , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Humanos , Ácido Caínico/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Neurônios/fisiologia , Fosforilação , Convulsões/etiologia , Convulsões/fisiopatologia , Canais de Potássio Shal/química
8.
J Neurosci ; 35(15): 6221-30, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25878292

RESUMO

Neuronal hyperexcitability occurs early in the pathogenesis of Alzheimer's disease (AD) and contributes to network dysfunction in AD patients. In other disorders with neuronal hyperexcitability, dysfunction in the dendrites often contributes, but dendritic excitability has not been directly examined in AD models. We used dendritic patch-clamp recordings to measure dendritic excitability in the CA1 region of the hippocampus. We found that dendrites, more so than somata, of hippocampal neurons were hyperexcitable in mice overexpressing Aß. This dendritic hyperexcitability was associated with depletion of Kv4.2, a dendritic potassium channel important for regulating dendritic excitability and synaptic plasticity. The antiepileptic drug, levetiracetam, blocked Kv4.2 depletion. Tau was required, as crossing with tau knock-out mice also prevented both Kv4.2 depletion and dendritic hyperexcitability. Dendritic hyperexcitability induced by Kv4.2 deficiency exacerbated behavioral deficits and increased epileptiform activity in hAPP mice. We conclude that increased dendritic excitability, associated with changes in dendritic ion channels including Kv4.2, may contribute to neuronal dysfunction in early stages AD.


Assuntos
Doença de Alzheimer/patologia , Região CA1 Hipocampal/patologia , Dendritos/fisiologia , Neurônios/patologia , Canais de Potássio Shal/deficiência , Proteínas tau/deficiência , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/genética , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/farmacologia , Precursor de Proteína beta-Amiloide/genética , Animais , Ondas Encefálicas/efeitos dos fármacos , Ondas Encefálicas/genética , Região CA1 Hipocampal/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Humanos , Técnicas In Vitro , Levetiracetam , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação/genética , Neurônios/efeitos dos fármacos , Nootrópicos/farmacologia , Piracetam/análogos & derivados , Piracetam/farmacologia , Canais de Potássio Shal/genética , Proteínas tau/genética
9.
Clin Endocrinol (Oxf) ; 85(6): 845-851, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27293068

RESUMO

BACKGROUND: Germline mutations of the KCNJ5 gene encoding Kir3·4, a member of the inwardly rectifying K+ channel, have been identified in 'normal' adrenal glands, patients with familial hyperaldosteronism (FH) type III, aldosterone-producing adenomas (APAs) and sporadic cases of primary aldosteronism (PA). OBJECTIVE: To present two novel KCNJ5 gene mutations in hypertensive patients without PA, but with Adrenocorticotropic hormone (ACTH)-dependent aldosterone hypersecretion. DESIGN AND PATIENTS: Two hypertensive patients without PA, who exhibited enhanced ACTH-dependent response of aldosterone secretion, underwent genetic testing for the presence of the CYP11B1/CYP11B2 chimeric gene and KCNJ5 gene mutations. Genomic DNA was isolated from peripheral white blood cells, and the exons of the entire coding regions of the above genes were amplified and sequenced. Electrophysiological studies were performed to determine the effect of identified mutation(s) on the membrane reversal potentials. Structural biology studies were also carried out. RESULTS: Two novel germline heterozygous KCNJ5 mutations, p.V259M and p.Y348N, were detected in the two subjects. Electrophysiological studies showed that the Y348N mutation resulted in significantly less negative reversal potentials, suggesting loss of ion selectivity, while the V259M mutation did not affect the Kir3.4 current. In the mutated structural biology model, the N348 mutant resulted in significant loss of the ability for hydrogen bonding, while the M259 mutant was capable of establishing weaker interactions. The CYP11B1/CYP11B2 chimeric gene was not detected. CONCLUSIONS: These findings expand on the clinical spectrum of phenotypes associated with KCNJ5 mutations and implicate these mutations in the pathogenesis of hypertension associated with increased aldosterone response to ACTH stimulation.


Assuntos
Hormônio Adrenocorticotrópico/farmacologia , Aldosterona/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/genética , Mutação em Linhagem Germinativa/fisiologia , Hipertensão/etiologia , Citocromo P-450 CYP11B2/genética , Fenômenos Eletrofisiológicos , Feminino , Estudos de Associação Genética , Humanos , Hiperaldosteronismo , Masculino , Pessoa de Meia-Idade , Esteroide 11-beta-Hidroxilase/genética
10.
Proc Natl Acad Sci U S A ; 110(13): 5175-80, 2013 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-23479613

RESUMO

Learning and other cognitive tasks require integrating new experiences into context. In contrast to sensory-evoked synaptic plasticity, comparatively little is known of how synaptic plasticity may be regulated by intrinsic activity in the brain, much of which can involve nonclassical modes of neuronal firing and integration. Coherent high-frequency oscillations of electrical activity in CA1 hippocampal neurons [sharp-wave ripple complexes (SPW-Rs)] functionally couple neurons into transient ensembles. These oscillations occur during slow-wave sleep or at rest. Neurons that participate in SPW-Rs are distinguished from adjacent nonparticipating neurons by firing action potentials that are initiated ectopically in the distal region of axons and propagate antidromically to the cell body. This activity is facilitated by GABA(A)-mediated depolarization of axons and electrotonic coupling. The possible effects of antidromic firing on synaptic strength are unknown. We find that facilitation of spontaneous SPW-Rs in hippocampal slices by increasing gap-junction coupling or by GABA(A)-mediated axon depolarization resulted in a reduction of synaptic strength, and electrical stimulation of axons evoked a widespread, long-lasting synaptic depression. Unlike other forms of synaptic plasticity, this synaptic depression is not dependent upon synaptic input or glutamate receptor activation, but rather requires L-type calcium channel activation and functional gap junctions. Synaptic stimulation delivered after antidromic firing, which was otherwise too weak to induce synaptic potentiation, triggered a long-lasting increase in synaptic strength. Rescaling synaptic weights in subsets of neurons firing antidromically during SPW-Rs might contribute to memory consolidation by sharpening specificity of subsequent synaptic input and promoting incorporation of novel information.


Assuntos
Axônios/metabolismo , Relógios Biológicos/fisiologia , Região CA1 Hipocampal/fisiologia , Fases do Sono/fisiologia , Sinapses/metabolismo , Animais , Região CA1 Hipocampal/citologia , Canais de Cálcio Tipo L/metabolismo , Junções Comunicantes/metabolismo , Masculino , Proteínas do Tecido Nervoso/metabolismo , Ratos , Ratos Sprague-Dawley , Ácido gama-Aminobutírico/metabolismo
11.
J Biol Chem ; 289(46): 32153-32165, 2014 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-25190807

RESUMO

Dipeptidyl peptidase-like protein 6 (DPP6) is an auxiliary subunit of the Kv4 family of voltage-gated K(+) channels known to enhance channel surface expression and potently accelerate their kinetics. DPP6 is a single transmembrane protein, which is structurally remarkable for its large extracellular domain. Included in this domain is a cysteine-rich motif, the function of which is unknown. Here we show that this cysteine-rich domain of DPP6 is required for its export from the ER and expression on the cell surface. Disulfide bridges formed at C349/C356 and C465/C468 of the cysteine-rich domain are necessary for the enhancement of Kv4.2 channel surface expression but not its interaction with Kv4.2 subunits. The short intracellular N-terminal and transmembrane domains of DPP6 associates with and accelerates the recovery from inactivation of Kv4.2, but the entire extracellular domain is necessary to enhance Kv4.2 surface expression and stabilization. Our findings show that the cysteine-rich domain of DPP6 plays an important role in protein folding of DPP6 that is required for transport of DPP6/Kv4.2 complexes out of the ER.


Assuntos
Dipeptidil Peptidases e Tripeptidil Peptidases/química , Dipeptidil Peptidases e Tripeptidil Peptidases/fisiologia , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/fisiologia , Canais de Potássio/química , Canais de Potássio/fisiologia , Animais , Biotinilação , Células COS , Membrana Celular/metabolismo , Chlorocebus aethiops , Cisteína/química , Dissulfetos/química , Eletrofisiologia , Retículo Endoplasmático/metabolismo , Células HEK293 , Humanos , Potenciais da Membrana , Neurônios/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Transporte Proteico , Canais de Potássio Shal/química
12.
J Neurosci ; 32(41): 14427-32, 2012 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-23055512

RESUMO

Neuronal activity is critical for the formation and modification of neural circuits during brain development. In hippocampal CA1 pyramidal dendrites, A-type voltage-gated K(+) currents, formed primarily by Kv4.2 subunits, control excitability. Here we used Kv4.2 knock-out (Kv4.2-KO) mice along with acute in vivo expression of Kv4.2 or its dominant-negative pore mutant to examine the role of Kv4.2 in the development of CA1 synapses. We found that Kv4.2 expression induces synaptic maturation in juvenile WT mice and rescues developmentally delayed synapses in adult Kv4.2-KO mice. In addition, we show that NMDAR subunit composition can be reverted back to the juvenile form in WT adult synapses by functionally downregulating Kv4.2 levels. These results suggest that Kv4.2 regulation of excitability determines synaptic maturation state, which can be bidirectionally adjusted into adulthood.


Assuntos
Região CA1 Hipocampal/fisiologia , Neurogênese/fisiologia , Canais de Potássio Shal/fisiologia , Sinapses/fisiologia , Animais , Região CA1 Hipocampal/citologia , Potenciais Pós-Sinápticos Excitadores/genética , Potenciais Pós-Sinápticos Excitadores/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Simulação de Dinâmica Molecular , Neurogênese/genética , Canais de Potássio Shal/deficiência , Canais de Potássio Shal/genética , Sinapses/genética
13.
J Neurosci ; 32(44): 15511-20, 2012 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-23115188

RESUMO

Chronically altered levels of network activity lead to changes in the morphology and functions of neurons. However, little is known of how changes in neuronal activity alter the intracellular signaling pathways mediating neuronal survival. Here, we use primary cultures of rat hippocampal neurons to show that elevated neuronal activity impairs phosphorylation of the serine/threonine kinase, Erk1/2, and the activation of signal transducer and activator of transcription 3 (STAT3) by phosphorylation of serine 727. Chronically stimulated neurons go through apoptosis when they fail to activate another serine/threonine kinase, Akt. Gain- and loss-of-function experiments show that STAT3 plays the key role directly downstream from Erk1/2 as the alternative survival pathway. Elevated neuronal activity resulted in increased expression of a tumor suppressor, p53, and its target gene, Bax. These changes are observed in Kv4.2 knock-out mouse hippocampal neurons, which are also sensitive to the blockade of TrkB signaling, confirming that the alteration occurs in vivo. Thus, this study provides new insight into a mechanism by which chronic elevation of activity may cause neurodegeneration.


Assuntos
Hipocampo/fisiologia , Neurônios/fisiologia , Fator de Transcrição STAT3/fisiologia , Transdução de Sinais/fisiologia , Animais , Western Blotting , Fator Neurotrófico Derivado do Encéfalo/fisiologia , Cálcio/metabolismo , Contagem de Células , Sobrevivência Celular/fisiologia , Imunoprecipitação da Cromatina , Hipocampo/citologia , Imuno-Histoquímica , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Degeneração Neural/patologia , Neuroimagem , Proteínas Proto-Oncogênicas c-akt/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Canais de Potássio Shal/genética , Canais de Potássio Shal/fisiologia , Transfecção
14.
J Neurophysiol ; 109(11): 2781-92, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23486201

RESUMO

The medial prefrontal cortex plays a key role in cocaine addiction. However, how chronic cocaine exposure affects cortical networks remains unclear. Most studies have focused on layer 5 pyramidal neurons (the circuit output), while the response of local GABAergic interneurons to cocaine remains poorly understood. Here, we recorded from fast-spiking interneurons (FS-IN) after repeated cocaine exposure and found altered membrane excitability. After cocaine withdrawal, FS-IN showed an increase in the number of spikes evoked by positive current injection, increased input resistance, and decreased hyperpolarization-activated current. We also observed a reduction in miniature excitatory postsynaptic currents, whereas miniature inhibitory postsynaptic current activity was unaffected. We show that, in animals with cocaine history, dopamine receptor D(2) activation is less effective in increasing FS-IN intrinsic excitability. Interestingly, these alterations are only observed 1 wk or more after the last cocaine exposure. This suggests that the dampening of D(2)-receptor-mediated response may be a compensatory mechanism to rein down the excitability of FS-IN.


Assuntos
Cocaína/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Interneurônios/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Animais , Interneurônios/metabolismo , Interneurônios/fisiologia , Masculino , Potenciais Pós-Sinápticos em Miniatura , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/fisiologia , Ratos , Ratos Sprague-Dawley , Receptores de Dopamina D2/metabolismo , Fatores de Tempo
15.
J Neurosci ; 31(4): 1323-32, 2011 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-21273417

RESUMO

Kv4.2, as the primary α-subunit of rapidly inactivating, A-type voltage-gated K(+) (Kv) channels expressed in hippocampal CA1 pyramidal dendrites, plays a critical role in regulating their excitability. Activity-dependent trafficking of Kv4.2 relies on C-terminal protein kinase A (PKA) phosphorylation. A-kinase-anchoring proteins (AKAPs) target PKA to glutamate receptor and ion channel complexes to allow for discrete, local signaling. As part of a previous study, we showed that AKAP79/150 interacts with Kv4.2 complexes and that the two proteins colocalize in hippocampal neurons. However, the nature and functional consequence of their interaction has not been previously explored. Here, we report that the C-terminal domain of Kv4.2 interacts with an internal region of AKAP79/150 that overlaps with its MAGUK (membrane-associated guanylate kinase)-binding domain. We show that AKAP79/150-anchored PKA activity controls Kv4.2 surface expression in heterologous cells and hippocampal neurons. Consistent with these findings, disrupting PKA anchoring led to a decrease in neuronal excitability, while preventing dephosphorylation by the phosphatase calcineurin resulted in increased excitability. These results demonstrate that AKAP79/150 provides a platform for dynamic PKA regulation of Kv4.2 expression, fundamentally impacting CA1 excitability.


Assuntos
Proteínas de Ancoragem à Quinase A/fisiologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Hipocampo/fisiologia , Neurônios/fisiologia , Canais de Potássio Shal/metabolismo , Proteínas de Ancoragem à Quinase A/genética , Potenciais de Ação , Animais , Sítios de Ligação , Células Cultivadas , Guanilato Quinases/metabolismo , Hipocampo/citologia , Mutação , Domínios PDZ , Fosforilação , Ligação Proteica , Transporte Proteico , Ratos
16.
J Biol Chem ; 286(30): 26496-506, 2011 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-21652711

RESUMO

The A kinase anchor protein AKAP150 recruits the cAMP-dependent protein kinase (PKA) to dendritic spines. Here we show that in AKAP150 (AKAP5) knock-out (KO) mice frequency of miniature excitatory post-synaptic currents (mEPSC) and inhibitory post-synaptic currents (mIPSC) are elevated at 2 weeks and, more modestly, 4 weeks of age in the hippocampal CA1 area versus litter mate WT mice. Linear spine density and ratio of AMPAR to NMDAR EPSC amplitudes were also increased. Amplitude and decay time of mEPSCs, decay time of mIPSCs, and spine size were unaltered. Mice in which the PKA anchoring C-terminal 36 residues of AKAP150 are deleted (D36) showed similar changes. Furthermore, whereas acute stimulation of PKA (2-4 h) increases spine density, prolonged PKA stimulation (48 h) reduces spine density in apical dendrites of CA1 pyramidal neurons in organotypic slice cultures. The data from the AKAP150 mutant mice show that AKAP150-anchored PKA chronically limits the number of spines with functional AMPARs at 2-4 weeks of age. However, synaptic transmission and spine density was normal at 8 weeks in KO and D36 mice. Thus AKAP150-independent mechanisms correct the aberrantly high number of active spines in juvenile AKAP150 KO and D36 mice during development.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Envelhecimento/fisiologia , Dendritos/metabolismo , Medula Espinal/citologia , Medula Espinal/metabolismo , Proteínas de Ancoragem à Quinase A/genética , Animais , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Potenciais Pós-Sinápticos Excitadores/fisiologia , Hipocampo/citologia , Hipocampo/metabolismo , Potenciais Pós-Sinápticos Inibidores/fisiologia , Masculino , Camundongos , Camundongos Knockout , Células Piramidais/citologia , Células Piramidais/metabolismo
17.
Hippocampus ; 22(5): 969-80, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-21472817

RESUMO

The heterogeneous expression of voltage-gated channels in dendrites suggests that neurons perform local microdomain computations at different regions. It has been shown that A-type K(+) channels have a nonuniform distribution along the primary apical dendrite in CA1 pyramidal neurons, increasing with distance from the soma. Kv4.2 channels, which are responsible for the somatodendritic A-type K(+) current in CA1 pyramidal neurons, shape local synaptic input, and regulate the back-propagation of APs into dendrites. Experiments were performed to test the hypothesis that Kv4.2 channels are differentially trafficked at different regions along the apical dendrite during basal activity and upon stimulation in CA1 neurons. Proximal (50-150 µm from the soma, primary and oblique) and distal (>200 µm) apical dendrites were selected. The fluorescence recovery after photobleaching (FRAP) technique was used to measure basal cycling rates of EGFP-tagged Kv4.2 (Kv4.2g). We found that the cycling rate of Kv4.2 channels was one order of magnitude slower at both primary and oblique dendrites between 50 and 150 µm from the soma. Kv4.2 channel cycling increased significantly at 200 to 250 µm from the soma. Expression of a Kv4.2 mutant lacking a phosphorylation site for protein kinase-A (Kv4.2gS552A) abolished this distance-dependent change in channel cycling; demonstrating that phosphorylation by PKA underlies the increased mobility in distal dendrites. Neuronal stimulation by α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) treatment increased cycling of Kv4.2 channels significantly at distal sites only. This activity-dependent increase in Kv4.2 cycling at distal dendrites was blocked by expression of Kv4.2gS552A. These results indicate that distance-dependent Kv4.2 mobility is regulated by activity-dependent phosphorylation of Kv4.2 by PKA.


Assuntos
Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/metabolismo , Dendritos/metabolismo , Transporte Proteico/fisiologia , Células Piramidais/metabolismo , Canais de Potássio Shal/metabolismo , Animais , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Endocitose/fisiologia , Recuperação de Fluorescência Após Fotodegradação , Fosforilação , Bloqueadores dos Canais de Potássio/farmacologia , Transporte Proteico/efeitos dos fármacos , Células Piramidais/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/farmacologia
18.
Front Cell Neurosci ; 16: 1070305, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36568885

RESUMO

Proteins usually form complexes to fulfill variable physiological functions. In neurons, communication relies on synapses where receptors, channels, and anchoring proteins form complexes to precisely control signal transduction, synaptic integration, and action potential firing. Although there are many published protocols to isolate protein complexes in cell lines, isolation in neurons has not been well established. Here we introduce a method that combines lentiviral protein expression with tandem affinity purification followed by mass-spectrometry (TAP-MS) to identify protein complexes in neurons. This protocol can also be used to identify post-translational modifications (PTMs) of synaptic proteins. We used the A-type voltage-gated K+ channel subunit Kv4.2 as the target protein. Kv4.2 is highly expressed in the hippocampus where it contributes to learning and memory through its regulation of neuronal excitability and synaptic plasticity. We tagged Kv4.2 with the calmodulin-binding-peptide (CBP) and streptavidin-binding-peptide (SBP) at its C-terminus and expressed it in neurons via lentivirus. Kv4.2 was purified by two-step TAP and samples were analyzed by MS. MS identified two prominently known Kv4.2 interacting proteins [dipeptidyl peptidase like (DPPs) and Kv channel-interacting proteins (KChIPs)] in addition to novel synaptic proteins including glutamate receptors, a calcium channel, and anchoring proteins. Co-immunoprecipitation and colocalization experiments validated the association of Kv4.2 with glutamate receptors. In addition to protein complex identification, we used TAP-MS to identify Kv4.2 phosphorylation sites. Several known and unknown phosphorylation sites were identified. These findings provide a novel path to identify protein-protein interactions and PTMs in neurons and shed light on mechanisms of neuronal signaling potentially involved in the pathology of neurological diseases.

19.
Biophys Rep (N Y) ; 2(4): 100082, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36425667

RESUMO

Neuronal function requires continuous distribution of ion channels and other proteins throughout large cell morphologies. Protein distribution is complicated by immobilization of freely diffusing subunits such as on lipid rafts or in postsynaptic densities. Here, we infer rates of immobilization for the voltage-gated potassium channel Kv4.2. Fluorescence recovery after photobleaching quantifies protein diffusion kinetics, typically reported as a recovery rate and mobile fraction. We show that, implicit in the fluorescence recovery, are rates of particle transfer between mobile and immobile fractions (im/mobilization). We performed photobleaching of fluorescein-tagged ion channel Kv4.2-sGFP2 in over 450 dendrites of rat hippocampal cells. Using mass-action models, we infer rates of Kv4.2-sGFP2 im/mobilization. Using a realistic neuron morphology, we show how these rates shape the speed and profile of subunit distribution. The experimental protocol and model inference introduced here is widely applicable to other cargo and experimental systems.

20.
Cell Rep ; 38(3): 110264, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35045307

RESUMO

The subthreshold voltage-gated transient K+ current (IA) carried by pore-forming Kv4.2 subunits regulates the propagation of synaptic input, dendritic excitability, and synaptic plasticity in CA1 pyramidal neuron dendrites of the hippocampus. We report that the Ca2+ channel subunit Cav2.3 regulates IA in this cell type. We initially identified Cav2.3 as a Kv4.2-interacting protein in a proteomic screen and we confirmed Cav2.3-Kv4.2 complex association using multiple techniques. Functionally, Cav2.3 Ca2+-entry increases Kv4.2-mediated whole-cell current due to an increase in Kv4.2 surface expression. Using pharmacology and Cav2.3 knockout mice, we show that Cav2.3 regulates the dendritic gradient of IA. Furthermore, the loss of Cav2.3 function leads to the enhancement of AMPA receptor-mediated synaptic currents and NMDA receptor-mediated spine Ca2+ influx. These results propose that Cav2.3 and Kv4.2 are integral constituents of an ion channel complex that affects synaptic function in the hippocampus.


Assuntos
Canais de Cálcio Tipo R/metabolismo , Dendritos/metabolismo , Hipocampo/metabolismo , Canais de Potássio Shal/metabolismo , Transmissão Sináptica/fisiologia , Animais , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/fisiologia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA