RESUMO
The effectiveness of checkpoint kinase 1 (Chk1) inhibitors at killing cancer cells is considered to be fully dependent on their effect on DNA replication initiation. Chk1 inhibition boosts origin firing, presumably limiting the availability of nucleotides and in turn provoking the slowdown and subsequent collapse of forks, thus decreasing cell viability. Here we show that slow fork progression in Chk1-inhibited cells is not an indirect effect of excess new origin firing. Instead, fork slowdown results from the accumulation of replication barriers, whose bypass is impeded by CDK-dependent phosphorylation of the specialized DNA polymerase eta (Polη). Also in contrast to the linear model, the accumulation of DNA damage in Chk1-deficient cells depends on origin density but is largely independent of fork speed. Notwithstanding this, origin dysregulation contributes only mildly to the poor proliferation rates of Chk1-depleted cells. Moreover, elimination of replication barriers by downregulation of helicase components, but not their bypass by Polη, improves cell survival. Our results thus shed light on the molecular basis of the sensitivity of tumors to Chk1 inhibition.
Assuntos
Quinase 1 do Ponto de Checagem/genética , Replicação do DNA , Técnicas de Silenciamento de Genes/métodos , Neoplasias/genética , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Dano ao DNA , DNA Polimerase Dirigida por DNA/metabolismo , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Células HEK293 , Humanos , Neoplasias/metabolismo , Fosforilação , Origem de ReplicaçãoRESUMO
DNA replication stress (DRS) leads to the accumulation of stalled DNA replication forks leaving a fraction of genomic loci incompletely replicated, a source of chromosomal rearrangements during their partition in mitosis. MUS81 is known to limit the occurrence of chromosomal instability by processing these unresolved loci during mitosis. Here, we unveil that the endonucleases ARTEMIS and XPF-ERCC1 can also induce stalled DNA replication forks cleavage through non-epistatic pathways all along S and G2 phases of the cell cycle. We also showed that both nucleases are recruited to chromatin to promote replication fork restart. Finally, we found that rapid chromosomal breakage controlled by ARTEMIS and XPF is important to prevent mitotic segregation defects. Collectively, these results reveal that Rapid Replication Fork Breakage (RRFB) mediated by ARTEMIS and XPF in response to DRS contributes to DNA replication efficiency and limit chromosomal instability.
Assuntos
Proteínas de Ligação a DNA/metabolismo , Endonucleases/metabolismo , Fase G2/genética , Proteínas Nucleares/metabolismo , Fase S/genética , Linhagem Celular Tumoral , Segregação de Cromossomos/fisiologia , Quebras de DNA de Cadeia Dupla , Dano ao DNA/fisiologia , Reparo do DNA/fisiologia , Proteínas de Ligação a DNA/genética , Endonucleases/genética , Fibroblastos , Instabilidade Genômica/fisiologia , Holoenzimas/genética , Holoenzimas/metabolismo , Humanos , Proteínas Nucleares/genética , RNA Interferente Pequeno/metabolismoRESUMO
DNA can experience "replication stress", an important source of genome instability, induced by various external or endogenous impediments that slow down or stall DNA synthesis. While genome instability is largely documented to favor both tumor formation and heterogeneity, as well as drug resistance, conversely, excessive instability appears to suppress tumorigenesis and is associated with improved prognosis. These findings support the view that karyotypic diversity, necessary to adapt to selective pressures, may be limited in tumors so as to reduce the risk of excessive instability. This review aims to highlight the contribution of specialized DNA polymerases in limiting extreme genetic instability by allowing DNA replication to occur even in the presence of DNA damage, to either avoid broken forks or favor their repair after collapse. These mechanisms and their key regulators Rad18 and Polθ not only offer diversity and evolutionary advantage by increasing mutagenic events, but also provide cancer cells with a way to escape anti-cancer therapies that target replication forks.
Assuntos
Replicação do DNA/genética , Proteínas de Ligação a DNA/genética , DNA Polimerase Dirigida por DNA/genética , Neoplasias/genética , Ubiquitina-Proteína Ligases/genética , Dano ao DNA/genética , Reparo do DNA/genética , Instabilidade Genômica/genética , Humanos , Mutagênese/genética , Neoplasias/patologia , Neoplasias/terapia , DNA Polimerase tetaRESUMO
DNA replication timing (RT), reflecting the temporal order of origin activation, is known as a robust and conserved cell-type specific process. Upon low replication stress, the slowing of replication forks induces well-documented RT delays associated to genetic instability, but it can also generate RT advances that are still uncharacterized. In order to characterize these advanced initiation events, we monitored the whole genome RT from six independent human cell lines treated with low doses of aphidicolin. We report that RT advances are cell-type-specific and involve large heterochromatin domains. Importantly, we found that some major late to early RT advances can be inherited by the unstressed next-cellular generation, which is a unique process that correlates with enhanced chromatin accessibility, as well as modified replication origin landscape and gene expression in daughter cells. Collectively, this work highlights how low replication stress may impact cellular identity by RT advances events at a subset of chromosomal domains.
Assuntos
Período de Replicação do DNA , Estresse Fisiológico , Afidicolina/farmacologia , Linhagem Celular Tumoral , Cromatina/metabolismo , Dano ao DNA , Período de Replicação do DNA/genética , Epigênese Genética/efeitos dos fármacos , Loci Gênicos , Código das Histonas , Humanos , Modelos Biológicos , Estresse Fisiológico/genéticaRESUMO
Telomerase negative cancer cell types use the Alternative Lengthening of Telomeres (ALT) pathway to elongate telomeres ends. Here, we show that silencing human DNA polymerase (Pol λ) in ALT cells represses ALT activity and induces telomeric stress. In addition, replication stress in the absence of Pol λ, strongly affects the survival of ALT cells. In vitro, Pol λ can promote annealing of even a single G-rich telomeric repeat to its complementary strand and use it to prime DNA synthesis. The noncoding telomeric repeat containing RNA TERRA and replication protein A negatively regulate this activity, while the Protection of Telomeres protein 1 (POT1)/TPP1 heterodimer stimulates Pol λ. Pol λ associates with telomeres and colocalizes with TPP1 in cells. In summary, our data suggest a role of Pol λ in the maintenance of telomeres by the ALT mechanism.
Assuntos
Aminopeptidases/metabolismo , DNA Polimerase beta/metabolismo , Quadruplex G , Serina Proteases/metabolismo , Homeostase do Telômero , Proteínas de Ligação a Telômeros/metabolismo , Linhagem Celular Tumoral , Humanos , Complexos Multiproteicos , Proteína de Replicação A/metabolismo , Complexo Shelterina , Telômero/química , Telômero/metabolismoRESUMO
Alteration in the DNA replication, repair or recombination processes is a highly relevant mechanism of genomic instability. Despite genomic aberrations manifested in hematologic malignancies, such a defect as a source of biomarkers has been underexplored. Here, we investigated the prognostic value of expression of 82 genes involved in DNA replication-repair-recombination in a series of 99 patients with chronic lymphocytic leukemia without detectable 17p deletion or TP53 mutation. We found that expression of the POLN gene, encoding the specialized DNA polymerase ν (Pol ν) correlates with time to relapse after first-line therapy with fludarabine. Moreover, we found that POLN was the only gene up-regulated in primary patients' lymphocytes when exposed in vitro to proliferative and pro-survival stimuli. By using two cell lines that were sequentially established from the same patient during the course of the disease and Pol ν knockout mouse embryonic fibroblasts, we reveal that high relative POLN expression is important for DNA synthesis and cell survival upon fludarabine treatment. These findings suggest that Pol ν could influence therapeutic resistance in chronic lymphocytic leukemia. (Patients' samples were obtained from the CLL 2007 FMP clinical trial registered at: clinicaltrials.gov identifer: 00564512).
Assuntos
DNA Polimerase Dirigida por DNA/genética , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Leucêmica da Expressão Gênica , Leucemia Linfocítica Crônica de Células B/genética , Proteína Supressora de Tumor p53/genética , Vidarabina/análogos & derivados , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Linhagem Celular Tumoral , DNA Polimerase Dirigida por DNA/metabolismo , Progressão da Doença , Perfilação da Expressão Gênica , Humanos , Leucemia Linfocítica Crônica de Células B/diagnóstico , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/mortalidade , Camundongos , Mutação , Prognóstico , Modelos de Riscos Proporcionais , Vidarabina/farmacologia , Vidarabina/uso terapêuticoRESUMO
Genome stability requires tight regulation of DNA replication to ensure that the entire genome of the cell is duplicated once and only once per cell cycle. In mammalian cells, origin activation is controlled in space and time by a cell-specific and robust program called replication timing. About 100,000 potential replication origins form on the chromatin in the gap 1 (G1) phase but only 20â»30% of them are active during the DNA replication of a given cell in the synthesis (S) phase. When the progress of replication forks is slowed by exogenous or endogenous impediments, the cell must activate some of the inactive or "dormant" origins to complete replication on time. Thus, the many origins that may be activated are probably key to protect the genome against replication stress. This review aims to discuss the role of these dormant origins as safeguards of the human genome during replicative stress.
Assuntos
Replicação do DNA , Origem de Replicação , Estresse Fisiológico , Animais , Instabilidade Genômica , Humanos , Modelos Biológicos , Células-Tronco/metabolismoRESUMO
Formation of primed single-stranded DNA at stalled replication forks triggers activation of the replication checkpoint signalling cascade resulting in the ATR-mediated phosphorylation of the Chk1 protein kinase, thus preventing genomic instability. By using siRNA-mediated depletion in human cells and immunodepletion and reconstitution experiments in Xenopus egg extracts, we report that the Y-family translesion (TLS) DNA polymerase kappa (Pol κ) contributes to the replication checkpoint response and is required for recovery after replication stress. We found that Pol κ is implicated in the synthesis of short DNA intermediates at stalled forks, facilitating the recruitment of the 9-1-1 checkpoint clamp. Furthermore, we show that Pol κ interacts with the Rad9 subunit of the 9-1-1 complex. Finally, we show that this novel checkpoint function of Pol κ is required for the maintenance of genomic stability and cell proliferation in unstressed human cells.
Assuntos
Replicação do DNA/fisiologia , DNA Polimerase Dirigida por DNA/metabolismo , Instabilidade Genômica/fisiologia , Proteínas Quinases/metabolismo , Proteínas de Xenopus/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células , Quinase 1 do Ponto de Checagem , DNA Polimerase Dirigida por DNA/genética , Células HeLa , Humanos , Proteínas Quinases/genética , Proteínas de Xenopus/genética , Xenopus laevisRESUMO
DNA replication is essential to maintain genome integrity in S phase of the cell division cycle. Accumulation of stalled replication forks is a major source of genetic instability, and likely constitutes a key driver of tumorigenesis. The mechanisms of regulation of replication fork progression have therefore been extensively investigated, in particular with DNA combing, an optical mapping technique that allows the stretching of single molecules and the mapping of active region for DNA synthesis by fluorescence microscopy. DNA linearization in nanochannels has been successfully used to probe genomic information patterns along single chromosomes, and has been proposed to be a competitive alternative to DNA combing. Yet this conjecture remains to be confirmed experimentally. Here, two complementary techniques are established to detect the genomic distribution of tracks of newly synthesized DNA in human cells by optical mapping in nanochannels. Their respective advantages and limitations are compared, and applied them to detect deregulations of the replication program induced by the antitumor drug hydroxyurea. The developments here thus broaden the field of applications accessible to nanofluidic technologies, and can be used in the future as part for molecular diagnostics in the context of high throughput cancer drug screening.
Assuntos
Replicação do DNA , Nanopartículas/química , Imagem Óptica/métodos , Difusão , Humanos , Microscopia de Força Atômica , Nanopartículas/ultraestrutura , Espectrometria por Raios X , Compostos de Vanádio/químicaRESUMO
BACKGROUND: One of the hallmarks of cancer is the occurrence of high levels of chromosomal rearrangements as a result of inaccurate repair of double-strand breaks (DSB). Germline mutations in BRCA and RAD51 genes, involved in DSB repair, are strongly associated with hereditary breast cancer. Pol θ, a translesional DNA polymerase specialized in the replication of damaged DNA, has been also shown to contribute to DNA synthesis associated to DSB repair. It is noteworthy that POLQ is highly expressed in breast tumors and this expression is able to predict patient outcome. The objective of this study was to analyze genetic variants related to POLQ as new population biomarkers of risk in hereditary (HBC) and sporadic (SBC) breast cancer. METHODS: We analyzed through case-control study nine SNPs of POLQ in hereditary (HBC) and sporadic (SBC) breast cancer patients using Taqman Real Time PCR assays. Polymorphisms were systematically identified through the NCBI database and are located within exons or promoter regions. We recruited 204 breast cancer patients (101 SBC and 103 HBC) and 212 unaffected controls residing in Southern Brazil. RESULTS: The rs581553 SNP located in the promoter region was strongly associated with HBC (c.-1060A > G; HBC GG = 15, Control TT = 8; OR = 5.67, CI95% = 2.26-14.20; p < 0.0001). Interestingly, 11 of 15 homozygotes for this polymorphism fulfilled criteria for Hereditary Breast and Ovarian Cancer (HBOC) syndrome. Furthermore, 12 of them developed bilateral breast cancer and one had a familial history of bilateral breast cancer. This polymorphism was also associated with bilateral breast cancer in 67 patients (OR = 9.86, CI95% = 3.81-25.54). There was no statistically significant difference of age at breast cancer diagnosis between SNP carriers and non-carriers. CONCLUSIONS: Considering that Pol θ is involved in DBS repair, our results suggest that this polymorphism may contribute to the etiology of HBC, particularly in patients with bilateral breast cancer.
Assuntos
Reparo do DNA , DNA Polimerase Dirigida por DNA/genética , Predisposição Genética para Doença , Variação Genética , Alelos , Substituição de Aminoácidos , Neoplasias da Mama/genética , Estudos de Casos e Controles , Feminino , Frequência do Gene , Genótipo , Síndrome Hereditária de Câncer de Mama e Ovário/genética , Humanos , Razão de Chances , Polimorfismo de Nucleotídeo Único , DNA Polimerase tetaRESUMO
Germline pathogenic variants in the exonuclease domain of the replicative DNA polymerase Pol ε encoded by the POLE gene, predispose essentially to colorectal and endometrial tumors by inducing an ultramutator phenotype. It is still unclear whether all the POLE alterations influence similar strength tumorigenesis, immune microenvironment, and treatment response. In this review, we summarize the current understanding of the mechanisms and consequences of POLE mutations in human malignancies; we highlight the heterogeneity of mutation rate and cancer aggressiveness among POLE variants, propose some mechanistic basis underlining such heterogeneity, and discuss novel considerations for the choice and efficacy of therapies of POLE tumors.
Assuntos
DNA Polimerase II , Neoplasias do Endométrio , Feminino , Humanos , DNA Polimerase II/genética , DNA Polimerase II/metabolismo , Replicação do DNA , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/patologia , Mutação em Linhagem Germinativa , Mutação/genética , Microambiente Tumoral , Proteínas de Ligação a Poli-ADP-Ribose/genética , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologiaRESUMO
Cytidine deaminase (CDA) functions in the pyrimidine salvage pathway for DNA and RNA syntheses and has been shown to protect cancer cells from deoxycytidine-based chemotherapies. In this study, we observed that CDA was overexpressed in pancreatic adenocarcinoma from patients at baseline and was essential for experimental tumor growth. Mechanistic investigations revealed that CDA localized to replication forks where it increased replication speed, improved replication fork restart efficiency, reduced endogenous replication stress, minimized DNA breaks, and regulated genetic stability during DNA replication. In cellular pancreatic cancer models, high CDA expression correlated with resistance to DNA-damaging agents. Silencing CDA in patient-derived primary cultures in vitro and in orthotopic xenografts in vivo increased replication stress and sensitized pancreatic adenocarcinoma cells to oxaliplatin. This study sheds light on the role of CDA in pancreatic adenocarcinoma, offering insights into how this tumor type modulates replication stress. These findings suggest that CDA expression could potentially predict therapeutic efficacy and that targeting CDA induces intolerable levels of replication stress in cancer cells, particularly when combined with DNA-targeted therapies. SIGNIFICANCE: Cytidine deaminase reduces replication stress and regulates DNA replication to confer resistance to DNA-damaging drugs in pancreatic cancer, unveiling a molecular vulnerability that could enhance treatment response.
Assuntos
Adenocarcinoma , Citidina Desaminase , Inibidores da Síntese de Ácido Nucleico , Neoplasias Pancreáticas , Humanos , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Citidina Desaminase/metabolismo , DNA , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Replicação do DNA , Inibidores da Síntese de Ácido Nucleico/uso terapêuticoRESUMO
"Replicative stress" is one of the main factors underlying neoplasia from its early stages. Genes involved in DNA synthesis may therefore represent an underexplored source of potential prognostic markers for cancer. To this aim, we generated gene expression profiles from two independent cohorts (France, n=206; United Kingdom, n=117) of patients with previously untreated primary breast cancers. We report here that among the 13 human nuclear DNA polymerase genes, DNA Polymerase (POLQ) is the only one significantly up-regulated in breast cancer compared with normal breast tissues. Importantly, POLQ up-regulation significantly correlates with poor clinical outcome (4.3-fold increased risk of death in patients with high POLQ expression), and this correlation is independent of Cyclin E expression or the number of positive nodes, which are currently considered as markers for poor outcome. POLQ expression provides thus an additional indicator for the survival outcome of patients with high Cyclin E tumor expression or high number of positive lymph nodes. Furthermore, to decipher the molecular consequences of POLQ up-regulation in breast cancer, we generated human MRC5-SV cell lines that stably overexpress POLQ. Strong POLQ expression was directly associated with defective DNA replication fork progression and chromosomal damage. Therefore, POLQ overexpression may be a promising genetic instability and prognostic marker for breast cancer.
Assuntos
Neoplasias da Mama/genética , Replicação do DNA/efeitos dos fármacos , DNA Polimerase Dirigida por DNA/genética , Instabilidade Genômica , Neoplasias da Mama/patologia , Linhagem Celular , Linhagem Celular Tumoral , Estudos de Coortes , Ciclina E/genética , Dano ao DNA , Feminino , França , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Pessoa de Meia-Idade , Prognóstico , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Reino Unido , Regulação para Cima , DNA Polimerase tetaRESUMO
The exonuclease domain of DNA polymerases epsilon's catalytic subunit (POLE) removes misincorporated nucleotides, called proofreading. POLE-exonuclease mutations cause colorectal- and endometrial cancers with an extreme burden of single nucleotide substitutions. We recently reported that particularly the hereditary POLE exonuclease mutation N363K predisposes in addition to aggressive giant cell glioblastomas. We knocked-in this mutation homozygously into human cell lines and compared its properties to knock-ins of the likewise hereditary POLE L424V mutation and to a complete proofreading-inactivating mutation (exo-null). We found that N363K cells have higher mutation rates as both L424V- or exo-null mutant cells. In contrast to L424V cells, N363K cells expose a growth defect, replication stress and DNA damage. In non-transformed cells, these burdens lead to aneuploidy but macroscopically normal nuclei. In contrast, transformed N363K cells phenocopy the enlarged and disorganized nuclei of giant cell glioblastomas. Taken together, our data characterize a POLE exonuclease domain mutant that not only causes single nucleotide hypermutation, but in addition DNA damage and chromosome instability, leading to an extended tumor spectrum. Our results expand the understanding of the polymerase exonuclease domain and suggest that an assessment of both the mutational potential and the genetic instability might refine classification and treatment of POLE-mutated tumors.
RESUMO
BACKGROUND: Homologous recombination repair (HR) is the most accurate repair pathway for double-strand breaks and replication fork disruption that is capable of faithfully restoring the original nucleotide sequence of the broken DNA. The deficiency of this mechanism is a frequent event in tumorigenesis. Therapies that exploit defects in HR have been explored essentially in breast, ovarian, pancreatic, and prostate cancers, but poorly in colorectal cancers (CRC), although CRC ranks second in mortality worldwide. METHODS: Tumor specimens and matched healthy tissues from 63 patients with CRC were assessed for gene expression of key HR components and mismatch repair (MMR) status, which correlated with clinicopathological features, progression-free survival, and overall survival (OS). RESULTS: Enhanced expression of MRE11 homolog (MRE11A), the gene encoding a key molecular actor for resection, is significantly overexpressed in CRC, is associated with the occurrence of primary tumors, particularly T3-T4, and is found in more than 90% of the right-side of CRC, the location with the worst prognosis. Importantly, we also found that high MRE11A transcript abundance is associated with 16.7 months shorter OS and a 3.5 higher risk of death. CONCLUSION: Monitoring of MRE11 expression could be used both as a predictor of outcome and as a marker to select CRC patients for treatments thus far adapted for HR-deficient cancers.
Assuntos
Neoplasias Colorretais , Humanos , Masculino , Neoplasias Colorretais/patologia , Reparo de Erro de Pareamento de DNA , Reparo do DNA , PrognósticoRESUMO
The cell life span depends on a subtle equilibrium between the accurate duplication of the genomic DNA and less stringent DNA transactions which allow cells to tolerate mutations associated with DNA damage. The physiological role of the alternative, specialized or TLS (translesion synthesis) DNA polymerases could be to favor the necessary "flexibility" of the replication machinery, by allowing DNA replication to occur even in the presence of blocking DNA damage. As these alternative DNA polymerases are inaccurate when replicating undamaged DNA, the regulation of their expression needs to be carefully controlled. Evidence in the literature supports that dysregulation of these error-prone enzymes contributes to the acquisition of a mutator phenotype that, along with defective cell cycle control or other genome stability pathways, could be a motor for accelerated tumor progression.
Assuntos
Replicação do DNA/genética , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Genes Neoplásicos , Instabilidade Genômica , Mutação , Neoplasias/genética , Animais , Aberrações Cromossômicas , Dano ao DNA , Reparo do DNA , Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Instabilidade de Microssatélites , MutagêneseRESUMO
Aim: The transcription factor RIP140 (receptor interacting protein of 140 kDa) is involved in intestinal tumorigenesis. It plays a role in the control of microsatellite instability (MSI), through the regulation of MSH2 and MSH6 gene expression. The aim of this study was to explore its effect on the expression of POLK, the gene encoding the specialized translesion synthesis (TLS) DNA polymerase κ known to perform accurate DNA synthesis at microsatellites. Methods: Different mouse models and engineered human colorectal cancer (CRC) cell lines were used to analyze by RT-qPCR, while Western blotting and luciferase assays were used to elucidate the role of RIP140 on POLK gene expression. Published DNA microarray datasets were reanalyzed. The in vitro sensitivity of CRC cells to methyl methane sulfonate and cisplatin was determined. Results: RIP140 positively regulates, at the transcriptional level, the expression of the POLK gene, and this effect involves, at least partly, the p53 tumor suppressor. In different cohorts of CRC biopsies (with or without MSI), a strong positive correlation was observed between RIP140 and POLK gene expression. In connection with its effect on POLK levels and the TLS function of this polymerase, the cellular response to methyl methane sulfonate was increased in cells lacking the Rip140 gene. Finally, the association of RIP140 expression with better overall survival of CRC patients was observed only when the corresponding tumors exhibited low levels of POLK, thus strengthening the functional link between the two genes in human CRC. Conclusion: The regulation of POLK gene expression by RIP140 could thus contribute to the maintenance of microsatellite stability, and more generally to the control of genome integrity.
RESUMO
DNA polymerase δ (pol δ) is one of the two main replicative polymerases in eukaryotes; it synthesizes the lagging DNA strand and also functions in DNA repair. In previous work, we demonstrated that heterozygous expression of the pol δ L604G variant in mice results in normal life span and no apparent phenotype, whereas a different substitution at the same position, L604K, is associated with shortened life span and accelerated carcinogenesis. Here, we report in vitro analysis of the homologous mutations at position Leu-606 in human pol δ. Four-subunit human pol δ variants that harbor or lack 3' â 5'-exonucleolytic proofreading activity were purified from Escherichia coli. The pol δ L606G and L606K holoenzymes retain catalytic activity and processivity similar to that of wild type pol δ. pol δ L606G is highly error prone, incorporating single noncomplementary nucleotides at a high frequency during DNA synthesis, whereas pol δ L606K is extremely accurate, with a higher fidelity of single nucleotide incorporation by the active site than that of wild type pol δ. However, pol δ L606K is impaired in the bypass of DNA adducts, and the homologous variant in mouse embryonic fibroblasts results in a decreased rate of replication fork progression in vivo. These results indicate that different substitutions at a single active site residue in a eukaryotic polymerase can either increase or decrease the accuracy of synthesis relative to wild type and suggest that enhanced fidelity of base selection by a polymerase active site can result in impaired lesion bypass and delayed replication fork progression.
Assuntos
Domínio Catalítico/genética , DNA Polimerase III , Replicação do DNA , Mutação , Isoformas de Proteínas , Sequência de Aminoácidos , Animais , Sequência de Bases , DNA Polimerase III/química , DNA Polimerase III/genética , DNA Polimerase III/metabolismo , Humanos , Camundongos , Dados de Sequência Molecular , Antígeno Nuclear de Célula em Proliferação/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismoRESUMO
The major challenge of DNA replication is to provide daughter cells with intact and fully duplicated genetic material. However, various endogenous or environmental factors can slow down or stall DNA replication forks; these replication problems are known to fuel genomic instability and associated pathology, including cancer progression. Whereas the mechanisms emphasizing the source and the cellular responses of replicative problems have attracted much consideration over the past decade, the propagation through mitosis of genome modification and its heritability in daughter cells when the stress is not strong enough to provoke a checkpoint response in G2/M was much less documented. Some recent studies addressing whether low replication stress could impact the DNA replication program of the next generation of cells made the remarkable discovery that DNA damage can indeed be transmitted to daughter cells and can be processed in the subsequent S-phase, and that the replication timing program at a subset of chromosomal domains can also be impacted in the next generation of cells. Such a progression of replication problems into mitosis and daughter cells may appear counter-intuitive, but it could offer considerable advantages by alerting the next generation of cells of potentially risky loci and offering the possibility of an adaptive mechanism to anticipate a reiteration of problems, notably for cancer cells in the context of resistance to therapy.
Assuntos
Ciclo Celular , Cromossomos de Plantas/genética , Replicação do DNA , Instabilidade Genômica , Mitose , Dano ao DNA , Reparo do DNA , Humanos , Origem de ReplicaçãoRESUMO
As poly-(ADP)-ribose polymerase (PARP) inhibition is synthetic lethal with the deficiency of DNA double-strand (DSB) break repair by homologous recombination (HR), PARP inhibitors (PARPi) are currently used to treat breast cancers with mutated BRCA1/2 HR factors. Unfortunately, the increasingly high rate of PARPi resistance in clinical practice has dented initial hopes. Multiple resistance mechanisms and acquired vulnerabilities revealed in vitro might explain this setback. We describe the mechanisms and vulnerabilities involved, including newly identified modes of regulation of DSB repair that are now being tested in large cohorts of patients and discuss how they could lead to novel treatment strategies to improve the therapeutic index of PARPi.