Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Ecol ; 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37933429

RESUMO

A species' success during the invasion of new areas hinges on an interplay between the demographic processes common to invasions and the specific ecological context of the novel environment. Evolutionary genetic studies of invasive species can investigate how genetic bottlenecks and ecological conditions shape genetic variation in invasions, and our study pairs two invasive populations that are hypothesized to be from the same source population to compare how each population evolved during and after introduction. Invasive European starlings (Sturnus vulgaris) established populations in both Australia and North America in the 19th century. Here, we compare whole-genome sequences among native and independently introduced European starling populations to determine how demographic processes interact with rapid evolution to generate similar genetic patterns in these recent and replicated invasions. Demographic models indicate that both invasive populations experienced genetic bottlenecks as expected based on invasion history, and we find that specific genomic regions have differentiated even on this short evolutionary timescale. Despite genetic bottlenecks, we suggest that genetic drift alone cannot explain differentiation in at least two of these regions. The demographic boom intrinsic to many invasions as well as potential inversions may have led to high population-specific differentiation, although the patterns of genetic variation are also consistent with the hypothesis that this infamous and highly mobile invader adapted to novel selection (e.g., extrinsic factors). We use targeted sampling of replicated invasions to identify and evaluate support for multiple, interacting evolutionary mechanisms that lead to differentiation during the invasion process.

2.
Mol Ecol ; 30(5): 1251-1263, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33464634

RESUMO

Populations of invasive species that colonize and spread in novel environments may differentiate both through demographic processes and local selection. European starlings (Sturnus vulgaris) were introduced to New York in 1890 and subsequently spread throughout North America, becoming one of the most widespread and numerous bird species on the continent. Genome-wide comparisons across starling individuals and populations can identify demographic and/or selective factors that facilitated this rapid and successful expansion. We investigated patterns of genomic diversity and differentiation using reduced-representation genome sequencing of 17 winter-season sampling sites. Consistent with this species' high dispersal rate and rapid expansion history, we found low geographical differentiation and few FST outliers even at a continental scale. Despite starting from a founding population of ~180 individuals, North American starlings show only a moderate genetic bottleneck, and models suggest a dramatic increase in effective population size since introduction. In genotype-environment associations we found that ~200 single-nucleotide polymorphisms are correlated with temperature and/or precipitation against a background of negligible genome- and range-wide divergence. Given this evidence, we suggest that local adaptation in North American starlings may have evolved rapidly even in this wide-ranging and evolutionarily young system. This survey of genomic signatures of expansion in North American starlings is the most comprehensive to date and complements ongoing studies of world-wide local adaptation in these highly dispersive and invasive birds.


Assuntos
Estorninhos , Animais , Variação Genética , Humanos , Espécies Introduzidas , New York , América do Norte , Estorninhos/genética
3.
Trends Genet ; 33(3): 171-182, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28174022

RESUMO

Coloration is one of the most conspicuous traits that varies among organisms. Carotenoid pigments are responsible for many of the red, orange, and yellow colors in the natural world and, at least for most animals, these molecules must be acquired from their environment. Identifying genes important for carotenoid transport, deposition, and processing has been difficult, in contrast to the well-characterized genes involved in the melanogenesis pathways. We review recent progress in the genetics of carotenoid processing, advances owing in part to the application of high-throughput sequencing data. We focus on examples from several classes of genes coding for scavenger receptors, ß-carotene oxygenases, and ketolases. We also review comparative studies that have revealed several important findings in the evolution of these genes. Namely, that they are conserved across deep phylogenetic timescales, are associated with gene/genome duplications, and introgression has contributed to their movement between several taxa.


Assuntos
Carotenoides/genética , Evolução Molecular , Filogenia , Pigmentação/genética , Animais , Carotenoides/biossíntese , Dioxigenases/genética , Receptores Depuradores/genética
4.
Ecol Lett ; 19(10): 1219-27, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27500971

RESUMO

One of the primary ways that organisms cope with environmental change is through regulation of the hypothalamo-pituitary-adrenal (HPA) axis, the neuroendocrine system that controls reactions to stress. Variation in genes regulating the HPA axis - particularly the glucocorticoid receptor - may facilitate adaptation to changing climatic conditions by altering expression. Here we examine signatures of selection on the glucocorticoid receptor gene (Nr3c1) in African starlings that inhabit a range of environments, including those with variable climatic conditions. To investigate potential adaptive mechanisms underlying the vertebrate stress response, we sequence the Nr3c1 gene in 27 species of African starlings. Although we find some evidence of positive selection, substitution rate is negatively correlated with variance in precipitation. This suggests climatic cycling in sub-Saharan Africa may have resulted in lower substitution rates to maintain a successful coping strategy. When environmental conditions fluctuate rapidly, variation in the strength of purifying selection can explain evolutionary rate variation.


Assuntos
Evolução Molecular , Passeriformes/genética , Passeriformes/fisiologia , Receptores de Glucocorticoides/metabolismo , Adaptação Fisiológica/genética , Animais , Ecossistema , Receptores de Glucocorticoides/genética
5.
Mol Ecol Resour ; 22(8): 3141-3160, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35763352

RESUMO

The European starling, Sturnus vulgaris, is an ecologically significant, globally invasive avian species that is also suffering from a major decline in its native range. Here, we present the genome assembly and long-read transcriptome of an Australian-sourced European starling (S. vulgaris vAU), and a second, North American, short-read genome assembly (S. vulgaris vNA), as complementary reference genomes for population genetic and evolutionary characterization. S. vulgaris vAU combined 10× genomics linked-reads, low-coverage Nanopore sequencing, and PacBio Iso-Seq full-length transcript scaffolding to generate a 1050 Mb assembly on 6222 scaffolds (7.6 Mb scaffold N50, 94.6% busco completeness). Further scaffolding against the high-quality zebra finch (Taeniopygia guttata) genome assigned 98.6% of the assembly to 32 putative nuclear chromosome scaffolds. Species-specific transcript mapping and gene annotation revealed good gene-level assembly and high functional completeness. Using S. vulgaris vAU, we demonstrate how the multifunctional use of PacBio Iso-Seq transcript data and complementary homology-based annotation of sequential assembly steps (assessed using a new tool, saaga) can be used to assess, inform, and validate assembly workflow decisions. We also highlight some counterintuitive behaviour in traditional busco metrics, and present buscomp, a complementary tool for assembly comparison designed to be robust to differences in assembly size and base-calling quality. This work expands our knowledge of avian genomes and the available toolkit for assessing and improving genome quality. The new genomic resources presented will facilitate further global genomic and transcriptomic analysis on this ecologically important species.


Assuntos
Estorninhos , Animais , Austrália , Genoma/genética , Genômica , Anotação de Sequência Molecular , Estorninhos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA