Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neurobiol Learn Mem ; 212: 107937, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38735637

RESUMO

Systemic manipulations that enhance dopamine (DA) transmission around the time of fear extinction can strengthen fear extinction and reduce conditioned fear relapse. Prior studies investigating the brain regions where DA augments fear extinction focus on targets of mesolimbic and mesocortical DA systems originating in the ventral tegmental area, given the role of these DA neurons in prediction error. The dorsal striatum (DS), a primary target of the nigrostriatal DA system originating in the substantia nigra (SN), is implicated in behaviors beyond its canonical role in movement, such as reward and punishment, goal-directed action, and stimulus-response associations, but whether DS DA contributes to fear extinction is unknown. We have observed that chemogenetic stimulation of SN DA neurons during fear extinction prevents the return of fear in contexts different from the extinction context, a form of relapse called renewal. This effect of SN DA stimulation is mimicked by a DA D1 receptor (D1R) agonist injected into the DS, thus implicating DS DA in fear extinction. Different DS subregions subserve unique functions of the DS, but it is unclear where in the DS D1R agonist acts during fear extinction to reduce renewal. Furthermore, although fear extinction increases neural activity in DS subregions, whether neural activity in DS subregions is causally involved in fear extinction is unknown. To explore the role of DS subregions in fear extinction, adult, male Long-Evans rats received microinjections of either the D1R agonist SKF38393 or a cocktail consisting of GABAA/GABAB receptor agonists muscimol/baclofen selectively into either dorsomedial (DMS) or dorsolateral (DLS) DS subregions immediately prior to fear extinction, and extinction retention and renewal were subsequently assessed drug-free. While increasing D1R signaling in the DMS during fear extinction did not impact fear extinction retention or renewal, DMS inactivation reduced later renewal. In contrast, DLS inactivation had no effect on fear extinction retention or renewal but increasing D1R signaling in the DLS during extinction reduced fear renewal. These data suggest that DMS and DLS activity during fear extinction can have opposing effects on later fear renewal, with the DMS promoting renewal and the DLS opposing renewal. Mechanisms through which the DS could influence the contextual gating of fear extinction are discussed.


Assuntos
Corpo Estriado , Extinção Psicológica , Medo , Receptores de Dopamina D1 , Animais , Medo/fisiologia , Medo/efeitos dos fármacos , Extinção Psicológica/efeitos dos fármacos , Extinção Psicológica/fisiologia , Masculino , Ratos , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/fisiologia , Corpo Estriado/metabolismo , Receptores de Dopamina D1/fisiologia , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D1/antagonistas & inibidores , Agonistas de Dopamina/farmacologia , Condicionamento Clássico/efeitos dos fármacos , Condicionamento Clássico/fisiologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/fisiologia , Substância Negra/efeitos dos fármacos , Substância Negra/fisiologia , Ratos Long-Evans , Dopamina/metabolismo , Dopamina/fisiologia
2.
Stress ; 26(1): 2245492, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37549016

RESUMO

Common stress-related mental health disorders affect women more than men. Physical activity can provide protection against the development of future stress-related mental health disorders (i.e. stress resistance) in both sexes, but whether there are sex differences in exercise-induced stress resistance is unknown. We have previously observed that voluntary wheel running (VWR) protects both female and male rats against the anxiety- and exaggerated fear-like behavioral effects of inescapable stress, but the time-course and magnitude of VWR-induced stress resilience has not been compared between sexes. The goal of the current study was to determine whether there are sex differences in the time-course and magnitude of exercise-induced stress resistance. In adult female and male Sprague Dawley rats, 6 weeks of VWR produced robust protection against stress-induced social avoidance and exaggerated fear. The magnitude of stress protection was similar between the sexes and was independent of reactivity to shock, general locomotor activity, and circulating corticosterone. Interestingly, 3 weeks of VWR prevented both stress-induced social avoidance and exaggerated fear in females but only prevented stress-induced social avoidance in males. Ovariectomy altered wheel-running behavior in females such that it resembled that of males, however; 3 weeks of VWR still protected females against behavioral consequences of stress regardless of the absence of ovaries. These data indicate that female Sprague Dawley rats are more responsive to exercise-induced stress resistance than are males.


The duration of wheel running required to enable stress resistance differs between the sexes in a behavior-dependent manner.Wheel running enables rapid protection against stress-induced social avoidance in both male and female Sprague Dawley rats.Wheel running enables protection against stress-induced exaggerated fear more readily in female Sprague Dawley rats compared to males.Ovarian hormones are not necessary for stress-protection produced by 3 weeks of wheel running in female Sprague Dawley rats.


Assuntos
Atividade Motora , Condicionamento Físico Animal , Ratos , Animais , Feminino , Masculino , Humanos , Ratos Sprague-Dawley , Estresse Psicológico , Ovariectomia , Medo
3.
Psychopharmacology (Berl) ; 239(11): 3697-3709, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36195731

RESUMO

RATIONALE: Exercise participation remains low despite clear benefits. Rats engage in voluntary wheel running (VWR) that follows distinct phases of acquisition, during which VWR escalates, and maintenance, during which VWR remains stable. Understanding mechanisms driving acquisition and maintenance of VWR could lead to novel strategies to promote exercise. The two phases of VWR resemble those that occur during operant conditioning and, therefore, might involve similar neural substrates. The dorsomedial (DMS) dorsal striatum (DS) supports the acquisition of operant conditioning, whereas the dorsolateral striatum (DLS) supports its maintenance. OBJECTIVES: Here we sought to characterize the roles of DS subregions in VWR. Females escalate VWR and operant conditioning faster than males. Thus, we also assessed for sex differences. METHODS: To determine the causal role of DS subregions in VWR, we pharmacologically inactivated the DMS or DLS of adult, male and female, Long-Evans rats during the two phases of VWR. The involvement of DA receptor 1 (D1)-expressing neurons in the DS was investigated by quantifying cfos mRNA within this neuronal population. RESULTS: We observed that, in males, the DMS and DLS are critical for VWR exclusively during acquisition and maintenance, respectively. In females, the DMS is also critical only during acquisition, but the DLS contributes to VWR during both VWR phases. DLS D1 neurons could be an important driver of VWR escalation during acquisition. CONCLUSIONS: The acquisition and maintenance of VWR involve unique neural substrates in the DS that vary by sex. Results reveal targets for sex-specific strategies to promote exercise.


Assuntos
Corpo Estriado , Atividade Motora , Ratos , Animais , Feminino , Masculino , Ratos Long-Evans , Corpo Estriado/fisiologia , Neostriado , RNA Mensageiro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA