RESUMO
Rib fractures remain the most frequent thoracic injury in motor vehicle crashes. Computational human body models (HBMs) can be used to simulate these injuries and design mitigation strategies, but they require adequately detailed geometry to replicate such fractures. Due to a lack of rib cross-sectional shape data availability, most commercial HBMs use highly simplified rib sections extracted from a single individual during original HBM development. This study provides human rib shape data collected from chest CT scans of 240 females and males across the full adult age range. A cortical bone mapping algorithm extracted cross-sectional geometry from scans in terms of local periosteal position with respect to the central rib axis and local cortex thickness. Principal component analysis was used to reduce the dimensionality of these cross-sectional shape data. Linear regression found significant associations between principal component scores and subject demographics (sex, age, height, and weight) at all rib levels, and predicted scores were used to explore the expected rib cross-sectional shapes across a wide range of subject demographics. The resulting detailed rib cross-sectional shapes were quantified in terms of their total cross-sectional area and their cortical bone cross-sectional area. Average-sized female ribs were smaller in total cross-sectional area than average-sized male ribs by between 20% and 36% across the rib cage, with the greatest differences seen in the central portions of rib 6. This trend persisted although to smaller differences of 14%-29% when comparing females and males of equal intermediate weight and stature. Cortical bone cross-sectional areas were up to 18% smaller in females than males of equivalent height and weight but also reached parity in certain regions of the rib cage. Increased age from 25 to 80 years was associated with reductions in cortical bone cross-sectional area (up to 37% in females and 26% in males at mid-rib levels). Total cross-sectional area was also seen to reduce with age in females but to a lesser degree (of up to 17% in mid-rib regions). Similar regions saw marginal increases in total cross-sectional area for male ribs, indicating age affects rib cortex thickness moreso than overall rib cross-sectional size. Increased subject height was associated with increased rib total and cortical bone cross-sectional areas by approximately 25% and 15% increases, respectively, in mid-rib sections for a given 30 cm increase in height, although the magnitudes of these associations varied by sex and rib location. Increased weight was associated with approximately equal changes in both cortical bone and total cross-sectional areas in males. These effects were most prominent (around 25% increases for an addition of 50 kg) toward lower ribs in the rib cage and had only modest effects (less than 12% change) in ribs 2-4. Females saw greater increases with weight in total rib area compared to cortical bone area, of up to 21% at the eighth rib level. Results from this study show the expected shapes of rib cross-sections across the adult rib cage and across a broad range of demographics. This detailed geometry can be used to produce accurate rib models representing widely varying populations.
Assuntos
Costelas , Tórax , Adulto , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Costelas/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Modelos Lineares , Osso CorticalRESUMO
INTRODUCTION: Abdominal aortic calcifications (AAC) are incidentally found on medical imaging and useful cardiovascular burden approximations. The Morphomic Aortic Calcification Score (MAC) leverages automated deep learning methods to quantify and score AACs. While associations of AAC and non-alcoholic fatty liver disease (NAFLD) have been described, relationships of AAC with other liver diseases and clinical outcome are sparse. This study's purpose was to evaluate AAC and liver-related death in a cohort of Veterans with chronic liver disease (CLD). METHODS: We utilized the VISN 10 CLD cohort, a regional cohort of Veterans with the three forms of CLD: NAFLD, hepatitis C (HCV), alcohol-associated (ETOH), seen between 2008 and 2014, with abdominal CT scans (n = 3604). Associations between MAC and cirrhosis development, liver decompensation, liver-related death, and overall death were evaluated with Cox proportional hazard models. RESULTS: The full cohort demonstrated strong associations of MAC and cirrhosis after adjustment: HR 2.13 (95% CI 1.63, 2.78), decompensation HR 2.19 (95% CI 1.60, 3.02), liver-related death HR 2.13 (95% CI 1.46, 3.11), and overall death HR 1.47 (95% CI 1.27, 1.71). These associations seemed to be driven by the non-NAFLD groups for decompensation and liver-related death [HR 2.80 (95% CI 1.52, 5.17; HR 2.34 (95% CI 1.14, 4.83), respectively]. DISCUSSION: MAC was strongly and independently associated with cirrhosis, liver decompensation, liver-related death, and overall death. Surprisingly, stratification results demonstrated comparable or stronger associations among those with non-NAFLD etiology. These findings suggest abdominal aortic calcification may predict liver disease severity and clinical outcomes in patients with CLD.
Assuntos
Doenças da Aorta , Cirrose Hepática , Calcificação Vascular , Veteranos , Humanos , Masculino , Feminino , Calcificação Vascular/diagnóstico por imagem , Calcificação Vascular/mortalidade , Cirrose Hepática/mortalidade , Cirrose Hepática/complicações , Cirrose Hepática/diagnóstico por imagem , Pessoa de Meia-Idade , Idoso , Veteranos/estatística & dados numéricos , Doenças da Aorta/mortalidade , Doenças da Aorta/diagnóstico por imagem , Doenças da Aorta/complicações , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/mortalidade , Hepatopatia Gordurosa não Alcoólica/diagnóstico por imagem , Aorta Abdominal/diagnóstico por imagem , Aorta Abdominal/patologia , Hepatopatias/mortalidade , Hepatopatias/diagnóstico por imagem , Hepatopatias/epidemiologia , Hepatopatias Alcoólicas/complicações , Hepatopatias Alcoólicas/mortalidade , Hepatopatias Alcoólicas/diagnóstico por imagem , Fatores de Risco , Estudos de CoortesRESUMO
Rib fractures are a common and serious outcome of blunt thoracic trauma and their likelihood is greater in older individuals. Osteoporotic bone loss is a well-documented aging phenomenon with sex-specific characteristics, but within rib bones, neither baseline maps of regional thickness nor the rates of bone thinning with age have been quantified across whole ribs. This study presents such data from 4014 ribs of 240 adult subjects aged 20-90. A validated cortical bone mapping technique was applied to clinical computed tomography scans to obtain local rib cortical bone thickness measurements over the surfaces of ribs 2 through 11. Regression models to age and sex gave rates of cortex thinning in local zones and aggregated across whole ribs. The statistical parametric mapping provided these relationships regionally as a function of rib surface location. All models showed significant reductions in bone thickness with age (p < 0.01). Average whole-rib thinning occurred at between 0.011 to 0.032 mm/decade (males) and 0.035 to 0.043 mm/decade (females), with sex and age accounting for up to 37% of population variability (R2 ). Rates of thinning differed regionally and by rib, with the highest bone loss of up to 0.074 mm/decade occurring in mid-rib cutaneous and superior regions of ribs 2-6. Rates were consistently higher in females than males (significantly so across whole ribs but not all local regions) and were more pronounced in cutaneous, superior, and inferior rib aspects (average 0.025 mm/decade difference in ribs 4-8) compared to pleural aspects which had the thickest cortices but saw only minor differences in thinning rates by sex (0.045 mm/decade for females and 0.040 mm/decade for males). Regional analysis showed male and female bone thickness differences that were not statistically significant at 20 years of age (p > 0.05 across practically all regions) but subsequent cortex thinning meant that substantial pleural and cutaneous regions were thinner (p < 0.05) in females than males by 55 years of age. The techniques and results from this study can be applied to assess rib bone content loss in clinical settings across wide populations. Additionally, average cortex thickness results can be mapped directly to finite element models of the thorax, and regression results are used to modify such models to represent the ribs of men and women across their full adult lifespan.
Assuntos
Fraturas das Costelas , Costelas , Adulto , Feminino , Humanos , Masculino , Idoso , Adulto Jovem , Pessoa de Meia-Idade , Costelas/diagnóstico por imagem , Osso Cortical/diagnóstico por imagem , Tórax , Tomografia Computadorizada por Raios XRESUMO
PURPOSE: The key landmark for tip position of a central venous catheter (CVC) is the SVC-RA junction. In adults, localization of the SVC-RA junction may be assessed as a function of vertebral body units (VBU) below the carina during CVC placement. We investigated the relationship between the SVC-RA junction and the carina in children. MATERIALS AND METHODS: 584 CT scans of 0-18 years were analyzed. The carina was marked automatically by software while the SVC-RA junction and vertebrae were marked manually. The SVC-RA junction to carina (JC) distance was the primary study measurement reported in both VBU and mm. RESULTS: The data show an average JC distance of 1.25 VBU for 0-1 year, 1.27 VBU for 1-4 years, 1.34 VBU for 4-9 years, 1.53 VBU for 9-15 years, and 1.64 VBU for 15-18 years. A positive relationship between weight and JC distance was also demonstrated. CONCLUSION: JC distance is a useful predictor of SVC-RA junction location in children. Significant relationships were shown between JC distance and both age and weight. Due to small differences between age groups, however, average JC distance for all comers (1.48 VBU, 95% CI 0.7 - 2.3) can be used for SVC-RA junction identification in CVC placement.
Assuntos
Cateterismo Venoso Central/métodos , Cateteres Venosos Centrais , Imageamento Tridimensional/métodos , Tomografia Computadorizada por Raios X/métodos , Traqueia/diagnóstico por imagem , Veia Cava Superior/diagnóstico por imagem , Corpo Vertebral/diagnóstico por imagem , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Reprodutibilidade dos Testes , Esterno/diagnóstico por imagemRESUMO
Here we present detailed regional bone thickness and cross-sectional measurements from full adult ribs using high resolution CT scans processed with a cortical bone mapping technique. Sixth ribs from 33 subjects ranging from 24 to 99 years of age were used to produce average cortical bone thickness maps and to provide average ± 1SD corridors for expected cross-section properties (cross-sectional areas and inertial moments) as a function of rib length. Results obtained from CT data were validated at specific rib locations using direct measurements from cut sections. Individual thickness measurements from CT had an accuracy (mean error) and precision (SD error) of -0.013 ± 0.167 mm (R2 coefficient of determination of 0.84). CT-based measurement errors for rib cross-sectional geometry were -0.1 ± 13.1% (cortical bone cross-sectional area) and 4.7 ± 1.8% (total cross-sectional area). Rib cortical bone thickness maps show the expected regional variation across a typical rib's surface. The local mid-rib maxima in cortical thickness along the pleural rib aspect ranged from range 0.9 to 2.6 mm across the study population with an average map maximum of 1.4 mm. Along the cutaneous aspect, rib cortical bone thickness ranged from 0.7 to 1.9 mm with an average map thickness of 0.9 mm. Average cross-sectional properties show a steady reduction in total cortical bone area from 10% along the rib's length through to the sternal end, whereas overall cross-sectional area remains relatively constant along the majority of the rib's length before rising steeply towards the sternal end. On average, male ribs contained more cortical bone within a given cross-section than was seen for female ribs. Importantly, however, this difference was driven by male ribs having larger overall cross-sectional areas, rather than by sex differences in the bone thickness observed at specific local cortex sites. The cortical bone thickness results here can be used directly to improve the accuracy of current human body and rib models. Furthermore, the measurement corridors obtained from adult subjects across a wide age range can be used to validate future measurements from more widely available image sources such as clinical CT where gold standard reference measures (e.g. such as direct measurements obtained from cut sections) are otherwise unobtainable.
Assuntos
Osso Cortical/anatomia & histologia , Costelas/anatomia & histologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Osso Cortical/diagnóstico por imagem , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Anatômicos , Tamanho do Órgão/fisiologia , Costelas/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Adulto JovemRESUMO
Elderly populations have a higher risk of rib fractures and other associated thoracic injuries than younger adults, and the changes in body morphology that occur with age are a potential cause of this increased risk. Rib centroidal path geometry for 20 627 ribs was extracted from computed tomography (CT) scans of 1042 live adult subjects, then fitted to a six-parameter mathematical model that accurately characterizes rib size and shape, and a three-parameter model of rib orientation within the body. Multivariable regression characterized the independent effect of age, height, weight, and sex on the rib shape and orientation across the adult population, and statistically significant effects were seen from all demographic factors (P < 0.0001). This study reports a novel aging effect whereby both the rib end-to-end separation and rib aspect ratio are seen to increase with age, producing elongated and flatter overall rib shapes in elderly populations, with age alone explaining up to 20% of population variability in the aspect ratio of mid-level ribs. Age was not strongly associated with overall rib arc length, indicating that age effects were related to shape change rather than overall bone length. The rib shape effect was found to be more strongly and directly associated with age than previously documented age-related changes in rib angulation. Other demographic results showed height and sex being most strongly associated with rib size, and weight most strongly associated with rib pump-handle angle. Results from the study provide a statistical model for building rib shapes typical of any given demographic by age, height, weight, and sex, and can be used to help build population-specific computational models of the thoracic rib cage. Furthermore, results also quantify normal population ranges for rib shape parameters which can be used to improve the assessment and treatment of rib skeletal deformity and disease.
Assuntos
Costelas/anatomia & histologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Costelas/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Adulto JovemRESUMO
INTRODUCTION: Factors predictive of response to immunotherapy are needed to select appropriate patients. As morphometric analysis can be an objective surrogate for underlying physiology, we explored the possibility that morphomics may predict response among stage IV melanoma patients treated with ipilimumab. METHODS: We identified stage IV melanoma patients treated with ipilimumab who had an appropriate CT scan within a 6 month window. Using semi-automated algorithms, we acquired several morphomic measurements. Toxicity and response rate compared by quartile using Fisher's exact test or chi-square, while survival after initiation of ipilimumab was compared by quartile using the log-rank test. RESULTS: While there was a significant correlation between toxicity and response (P < .003), morphomics failed to predict either severity of toxicity or specific side effects. Psoas density was significantly associated with response rate, both excluding stable disease (36.4% vs 9.1%, P = .054), and including stable disease (54.5% versus 18.2%, P = 0.045). Survival after initiation of ipilimumab was significantly associated with psoas density (P = 0.04) and visceral fat distance (P = 0.022). DISCUSSION: In an exploratory study of patients with metastatic melanoma being treated with ipilimumab, psoas density and spine-fascia distance correlated with response and survival. Pre-treatment morphomic analysis, as a correlate of underlying physiology, may help predict response to immunotherapy.
Assuntos
Anticorpos Monoclonais/uso terapêutico , Melanoma/patologia , Neoplasias Cutâneas/secundário , Tomografia Computadorizada por Raios X/métodos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Seguimentos , Humanos , Ipilimumab , Masculino , Melanoma/diagnóstico por imagem , Melanoma/tratamento farmacológico , Melanoma/mortalidade , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Prognóstico , Neoplasias Cutâneas/diagnóstico por imagem , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/mortalidade , Taxa de Sobrevida , Adulto JovemRESUMO
PURPOSE: To assess the prevalence of acetabular retroversion in a large population of patients with asymptomatic hips. Furthermore, we sought to identify gender differences in acetabular morphology to address the current thinking that retroversion and pincer-type femoroacetabular impingement (FAI) are more common in women. METHODS: We retrospectively reviewed morphologic features of acetabula from a consecutive series of trauma-protocol computed tomography scans of patients without pelvis injury. An automated algorithm determined the acetabular rim profile and center of the femoral head, normalized the frontal plane of the pelvis, and calculated version and coverage. We then compared male and female rim profiles, specifically focusing on version and acetabular wall coverage in the 1-o'clock (anterosuperior), 2-o'clock (central), and 3-o'clock (inferior) positions. RESULTS: Of 1,088 patients in the database, 878 had complete data (i.e., age, ethnicity, and body mass index) and were therefore included in the final analysis. Of these, 34.3% were women and 65.7% were men. Mean global acetabular version was 19.1° for men and 22.2° for women (P < .001). Mean acetabular version for men and women was 15.5° and 18.3°, respectively, in the 1-o'clock position; 21.5° and 24.0°, respectively, in the 2-o'clock position; and 20.2° and 24.3°, respectively, in the 3-o'clock position (P < .001 for all 3). True retroversion (<0°) was observed only in the 1-o'clock position. The prevalence of true acetabular retroversion in the 1-o'clock position for men and women was 4.3% and 3%, respectively (P = .36). CONCLUSIONS: Mean global and focal acetabular anteversion was greater in women, and the prevalence of focal cephalad retroversion in the 1-o'clock position was not significantly different compared with men. Acetabular retroversion and anterior overcoverage are not more prevalent in women in the anterosuperior acetabulum, where femoroacetabular impingement most commonly occurs. LEVEL OF EVIDENCE: Level III, diagnostic study.
Assuntos
Acetábulo/diagnóstico por imagem , Algoritmos , Impacto Femoroacetabular/diagnóstico por imagem , Cabeça do Fêmur/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Adulto , Feminino , Humanos , Masculino , Estudos Retrospectivos , Fatores SexuaisRESUMO
INTRODUCTION: Preoperative computed tomography (CT) evaluation of patients with nonsyndromic craniosynostosis (NSC) has focused on the bony cranial vault while ignoring the surrounding soft tissues. In this study, we posit that novel CT-derived temporal muscle and temporal fat pad morphomics (tissue thickness, area, and volume) can be used to calculate temporal morphomic indices (TMIs), which are unique to each NSC subtype (metopic, coronal, and sagittal) and divergent from normal individuals. METHODS: High-throughput image analysis was used to reconstruct the 3-dimensional anatomy and quantify a TMI. These steps were completed in a semiautomated method using algorithms programmed in MATLAB v13.0. Differences in TMI across various craniosynostosis subtypes were assessed using Wilcoxon nonparametric tests for both patients with NSC and a control cohort of patients with trauma. RESULTS: Using preoperative CT images, we evaluated 117 children with NSC from the University of Michigan Health System and 50 age-matched control patients between 1999 and 2011. Results indicate significant differences in TMI among the normal and NSC groups, with normal patients having significantly higher TMI values than patients with metopic, sagittal, and coronal synostosis. In addition, significant differences were found to exist between each craniosynostosis category. CONCLUSIONS: Patients with craniosynostosis demonstrate diminished temporalis muscle and overlying fat pad volume and thickness compared with control patients. The unique changes in temporal morphomics presented in this article demonstrate not only that the bony calvaria is affected by craniosynostosis but also that there exist quantifiable aberrations in the temporalis muscle and temporal fat pad. The methodologies described offer a novel methodology to use pre-existing CT scans to glean additional preoperative information on the soft tissue characteristics of patients with craniosynostosis.
Assuntos
Craniossinostoses/diagnóstico por imagem , Craniossinostoses/patologia , Interpretação de Imagem Radiográfica Assistida por Computador , Músculo Temporal/diagnóstico por imagem , Músculo Temporal/patologia , Tomografia Computadorizada por Raios X , Tecido Adiposo/patologia , Feminino , Humanos , Imageamento Tridimensional , Lactente , Masculino , Estudos RetrospectivosRESUMO
Rib cross-sectional shapes (characterized by the outer contour and cortical bone thickness) affect the rib mechanical response under impact loading, thereby influence the rib injury pattern and risk. A statistical description of the rib shapes or their correlations to anthropometrics is a prerequisite to the development of numerical human body models representing target demographics. Variational autoencoders (VAE) as anatomical shape generators remain to be explored in terms of utilizing the latent vectors to control or interpret the representativeness of the generated results. In this paper, we propose a pipeline for developing a multi-rib cross-sectional shape generative model from CT images, which consists of the achievement of rib cross-sectional shape data from CT images using an anatomical indexing system and regular grids, and a unified framework to fit shape distributions and associate shapes to anthropometrics for different rib categories. Specifically, we collected CT images including 3193 ribs, surface regular grid is generated for each rib based on anatomical coordinates, the rib cross-sectional shapes are characterized by nodal coordinates and cortical bone thickness. The tensor structure of shape data based on regular grids enable the implementation of CNNs in the conditional variational autoencoder (CVAE). The CVAE is trained against an auxiliary classifier to decouple the low-dimensional representations of the inter- and intra- variations and fit each intra-variation by a Gaussian distribution simultaneously. Random tree regressors are further leveraged to associate each continuous intra-class space with the corresponding anthropometrics of the subjects, i.e., age, height and weight. As a result, with the rib class labels and the latent vectors sampled from Gaussian distributions or predicted from anthropometrics as the inputs, the decoder can generate valid rib cross-sectional shapes of given class labels (male/female, 2nd to 11th ribs) for arbitrary populational percentiles or specific age, height and weight, which paves the road for future biomedical and biomechanical studies considering the diversity of rib shapes across the population.
Assuntos
Antropometria , Aprendizado Profundo , Costelas , Tomografia Computadorizada por Raios X , Humanos , Costelas/diagnóstico por imagem , Costelas/anatomia & histologia , Antropometria/métodos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Idoso , AdolescenteRESUMO
Sarcopenia is the age-related loss of skeletal muscle mass and function. Computed tomography (CT) assessments of sarcopenia utilize measurements of skeletal muscle cross-sectional area (SMA), radiation attenuation (SMRA), and intramuscular adipose tissue (IMAT). Unadjusted SMA is strongly correlated with both height and body mass index (BMI); therefore, SMA must be adjusted for body size to assess sarcopenic low muscle mass fairly in individuals of different heights and BMI. SMA/height (rather than S M A / h e i g h t 2 ) provides optimal height adjustment, and vertebra-specific relative muscle index (RMI) equations optimally adjust for both height and BMI. Since L3 measurement is not available in all CT scans, sarcopenic low muscle mass may be assessed using other levels. Both a mid-vertebral slice and an inferior slice have been used to define 'L3 SMA', but the effect of vertebral slice location on SMA measurements is unexplored. Healthy reference values for skeletal muscle measures at mid- and inferior vertebra slices between T10 and L5, have not yet been reported. We extracted T10 through L5 SMA, SMRA, and IMAT at a mid-vertebral and inferior slice using non-contrast-enhanced CT scans from healthy, adult kidney donor candidates between age 18 and 73. We compared paired differences in SMA between the mid-vertebral slice versus the inferior slice. We calculated the skeletal muscle gauge as S M G HT = S M R A ∗ S M I HT . We used allometric analysis to find the optimal height scaling power for SMA. To enable comparisons with other published reference cohorts, we computed two height-adjusted measures; S M I HT = S M A / h e i g h t (optimal) and S M I H T 2 = S M A / h e i g h t 2 (traditional). Using the young, healthy reference cohort, we utilized multiple linear regression to calculate relative muscle index z-scores ( R M I HT , R M I H T 2 ), which adjust for both height and BMI, at each vertebra level. We assessed Pearson correlations of each muscle area measure versus age, height, weight, and BMI separately by sex and vertebra number. We assessed the differences in means between age 18-40 versus 20-40 as the healthy, young adult reference group. We reported means, standard deviations, and sarcopenia cutpoints (mean-2SD and 5th percentile) by sex and age group for all measures. Sex-specific allometric analysis showed that height to the power of one was the optimal adjustment for SMA in both men and women at all vertebra levels. Differences between mid-vertebra and inferior slice SMA were statistically significant at each vertebra level, except for T10 in men. S M I HT was uncorrelated with height, whereas S M I H T 2 was negatively correlated with height at all vertebra levels. Both S M I HT and S M I H T 2 were positively correlated with BMI at all vertebra levels. R M I HT was uncorrelated with BMI, weight, and height (minimal positive correlation in women at L3 inf , L4 mid , and L5 inf ) whereas R M I H T 2 was uncorrelated with BMI, but negatively correlated with height and weight at all levels. There were no significant differences in SMA between 18-40 versus 20-40 age groups. Healthy reference values and sarcopenic cutpoints are reported stratified by sex, vertebra level, and age group for each measure. Height to the power of one (SMA/height) is the optimal height adjustment factor for SMA at all levels between T10 mid through L5 inf . The use of S M A / h e i g h t 2 should be discontinued as it retains a significant negative correlation with height and is therefore biased towards identifying sarcopenia in taller individuals. Measurement of SMA at a mid-vertebral slice is significantly different from measurement of SMA at an inferior aspect slice. Reference values should be used for the appropriate slice. We report sarcopenic healthy reference values for skeletal muscle measures at the mid-vertebral and inferior aspect slice for T10 through L5 vertebra levels. Relative muscle index (RMI) equations developed here minimize correlation with both height and BMI, producing unbiased assessments of relative muscle mass across the full range of body sizes. We recommend the use of these RMI equations in other cohorts.
Assuntos
Músculo Esquelético , Sarcopenia , Tomografia Computadorizada por Raios X , Humanos , Sarcopenia/diagnóstico por imagem , Masculino , Músculo Esquelético/diagnóstico por imagem , Feminino , Tomografia Computadorizada por Raios X/métodos , Idoso , Pessoa de Meia-Idade , Valores de Referência , Adulto , Índice de Massa Corporal , Tecido Adiposo/diagnóstico por imagem , Adulto Jovem , Vértebras Lombares/diagnóstico por imagemRESUMO
INTRODUCTION: In the setting of cardiovascular (CV) risk evaluation before major elective surgery, current risk assessment tools are relatively poor for discriminating among patients. For example, patients with clinical CV risk factors can be clearly identified; but among those without appreciated clinical CV risk, there may be a subset with stigmata of CV disease noted during the preoperative radiographic evaluation. Our study evaluated the relationship between abdominal aortic (AA) calcification measured on preoperative computed tomography (CT) imaging and surgical complications in patients undergoing general elective and vascular surgery. We hypothesized that patients with no known CV risk factors but significant aortic calcification on preoperative imaging will have inferior surgical outcomes. METHODS: The study group included 1180 patients from the Michigan Surgical Quality Collaborative (MSQC) database who underwent major general or vascular elective surgery between 2006 and 2009 and who had a CT scan of the abdomen specifically for preoperative planning. AA calcification was measured using novel analytic morphomic techniques and reported as a percentage of the total wall area containing calcification. Patients were divided into cohorts by clinical CV risk and extent of AA calcification. Univariate analysis was used to compare postoperative morbidity between patient cohorts. Multivariate logistic regression analysis was used to compare continuous AA calcification with overall morbidity in patients with no clinical CV risk factors. RESULTS: AA calcification was strongly skewed to the right (53.5% had no AA calcification) and was significantly correlated with age (ρ = 0.43, P < 0.001). Unadjusted univariate analysis of morbidity showed no significant differences in complication rates between patients in the clinical CV risk and significant AA calcification (no known CV risk factor) categories. The clinical CV risk (P < 0.001) and significant AA calcification without CV risk factors (P = 0.009) populations both had significantly more infectious and overall complications than patients with no AA calcification and no clinical CV risk. Multivariate logistic regression confirmed that AA calcification was a significant predictor of morbidity in patients with no clinical CV risk factors (odds ratio = 1.35, P = 0.017). DISCUSSION: This study suggests that AA calcification may be related to progression of CV disease and surgical outcomes. A better understanding of the complex interaction of patient physiology with overall ability to recover from major surgery, using novel approaches such as analytic morphomics, has great potential to improve risk stratification and patient selection.
Assuntos
Aorta Abdominal/patologia , Doenças da Aorta/patologia , Doenças Cardiovasculares/diagnóstico , Procedimentos Cirúrgicos Eletivos , Calcificação Vascular/patologia , Doenças Cardiovasculares/etiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Medição de Risco , Fatores de RiscoRESUMO
Introduction: Human body models (HBMs) play a key role in improving modern vehicle safety systems to protect broad populations. However, their geometry is commonly derived from single individuals chosen to meet global anthropometric targets, thus their internal anatomy may not fully represent the HBM's target demographic. Past studies show sixth rib cross-sectional geometry differences between HBM ribs and population-derived ribs, and corrections to HBM ribs based on these data have improved HBM's abilities to predict rib fracture locations. Methods: We measure and report average and standard deviations (SDs) in rib cross-sectional geometric properties derived from live subject CT scans of 240 adults aged 18-90. Male and female results are given as functions of rib number and rib lengthwise position for ribs 2 through 11. Population means/SDs are reported for measures of rib total area, rib cortical bone area, and rib endosteal area, as well as inertial moment properties of these rib sections. These population corridors are compared between males and females, and against the baseline rib geometries defined in six current HBMs. Results: Total cross-sectional area results found average males ribs to be larger than those of females by between approximately 1-2 SDs depending on rib number and position, and larger in cortical bone cross-sectional area by between 0-1 SDs. Inertial moment ratios showed female ribs being between approximately 0-1 SDs more elongated than male ribs, dependent again on rib number and position. Rib cross-sectional areas from 5 of the 6 HBMs were found to be overly large along substantial portions of most ribs when compared to average population corridors. Similarly, rib aspect ratios in HBMs deviated from average population data by up to 3 SDs in regions towards sternal rib ends. Discussion: Overall, while most HBMs capture overall trends such as reductions in cross-section along shaft lengths, many also exhibit local variation that deviates from population trends. This study's results provide the first reference values for assessing the cross-sectional geometry of human ribs across a wide range of rib levels. Results also further provide clear guidelines to improve rib geometry definitions present in current HBMs in order to better represent their target demographic.
RESUMO
Rib fractures remain a common injury for vehicle occupants in crashes. The risk of a human sustaining rib fractures from thorax loading is highly variable, potentially due to a variability in individual factors such as material properties and geometry of the ribs and ribcage. Human body models (HBMs) with a detailed ribcage can be used as occupant substitutes to aid in the prediction of rib injury risk at the tissue level in crash analysis. To improve this capability, model parametrization can be used to represent human variability in simulation studies. The aim of this study was to identify the variations in the physical properties of the human thorax that have the most influence on rib fracture risk for the population of vehicle occupants. A total of 15 different geometrical and material factors, sourced from published literature, were varied in a parametrized SAFER HBM. Parametric sensitivity analyses were conducted for two crash configurations, frontal and near-side impacts. The results show that variability in rib cortical bone thickness, rib cortical bone material properties, and rib cross-sectional width had the greatest influence on the risk for an occupant to sustain two or more fractured ribs in both impacts. Therefore, it is recommended that these three parameters be included in rib fracture risk analysis with HBMs for the population of vehicle occupants.
RESUMO
Evidence supporting aortic calcification as a leverageable cardiovascular risk factor is rapidly growing. Given aortic calcification's potential as a clinical correlate, we assessed granular vertebral-indexed calcification measurements of the abdominal aorta in a well curated reference population. We evaluated the relationship of aortic calcification measurements with Framingham risk scores. After exclusion, 4073 participants from the Reference Analytic Morphomic Population with varying vertebral levels were included. The percent of the aortic wall calcified was used to assess calcification burden at the L1-L4 levels. Descriptive statistics of participants, sex-specific vertebral indexed calcification measurements, relational plots, and relevant associations are reported. Mean aortic attenuation was higher in female than male participants. Overall, mean aortic calcium was higher with reference to inferior abdominal aortic measurements and demonstrated significant differences across all abdominal levels [L3 Area (mm[Formula: see text]): Females 6.34 (sd 16.60), Males 6.23 (sd 17.21); L3 Volume (mm[Formula: see text]): Females 178.90 (sd 474.19), Males 195.80 (sd 547.36); Wall Calcification (%): Females (L4) 6.97 (sd 16.03), Males (L3) 5.46 (13.80)]. Participants with elevated calcification had significantly higher Framingham risk scores compared to participants with normal calcification scores. Opportunistically measuring aortic calcification may inform further cardiovascular risk assessment and enhance cardiovascular event surveillance efforts.
Assuntos
Arteriosclerose , Calcinose , Calcificação Vascular , Humanos , Masculino , Feminino , Arteriosclerose/epidemiologia , Fatores de Risco , Calcinose/complicações , Medição de Risco , Aorta Abdominal/diagnóstico por imagem , Calcificação Vascular/diagnóstico por imagem , Calcificação Vascular/epidemiologia , Calcificação Vascular/complicaçõesRESUMO
OBJECTIVE: Assess the relationship between lean core muscle size, measured on preoperative cross-sectional images, and surgical outcomes. BACKGROUND: Novel measures of preoperative risk are needed. Analytic morphomic analysis of cross-sectional diagnostic images may elucidate vast amounts of patient-specific data, which are never assessed by clinicians. METHODS: The study population included all patients within the Michigan Surgical Quality Collaborative database with a computerized tomography(CT) scan before major, elective general or vascular surgery (N = 1453). The lean core muscle size was calculated using analytic morphomic techniques. The primary outcome measure was survival, whereas secondary outcomes included surgical complications and costs. Covariate adjusted outcomes were assessed using Kaplan-Meier analysis, multivariate cox regression, multivariate logistic regression, and generalized estimating equation methods. RESULTS: The mean follow-up was 2.3 years and 214 patients died during the observation period. The covariate-adjusted hazard ratio for lean core muscle area was 1.45 (P = 0.028), indicating that mortality increased by 45% per 1000 mm(2) decrease in lean core muscle area. When stratified into tertiles of core muscle size, the 1-year survival was 87% versus 95% for the smallest versus largest tertile, whereas the 3-year survival was 75% versus 91%, respectively (P < 0.003 for both comparisons). The estimated average risk of complications significantly differed and was 20.9%, 15.0%, and 12.3% in the lower, middle, and upper tertiles of lean core muscle area, respectively. Covariate-adjusted cost increased significantly by an estimated $10,110 per 1000 mm(2) decrease in core muscle size (P = 0.003). CONCLUSIONS: Core muscle size is an independent and potentially important preoperative risk factor. The techniques used to assess preoperative CT scans, namely analytic morphomics, may represent a novel approach to better understanding patient risk.
Assuntos
Músculo Esquelético/anatomia & histologia , Procedimentos Cirúrgicos Operatórios/mortalidade , Adulto , Idoso , Feminino , Humanos , Estimativa de Kaplan-Meier , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Músculos Psoas , Medição de Risco , Fatores de Risco , Tomografia Computadorizada por Raios X , Procedimentos Cirúrgicos Vasculares/mortalidadeRESUMO
BACKGROUND: Costal cartilage calcification (CCC) increases with age and presents differently for men and women. In individuals, however, the cross-sectional studies that show such trends do not reveal the geometric trajectories through which calcification might accumulate across a lifetime. Generative adversarial networks have the potential to reveal such trajectories from cross-sectional data by learning population trends and synthesizing individualized images at progressive levels of calcification. METHODS: Chest wall mid-surface CT images with normalized cartilage morphologies were produced for 379 subjects aged 6 to 90, and labeled by sex and calcification severity. A conditional GAN with added loss terms to favor one-way accumulation of CCC was trained using organized image batches. GAN performance was assessed by comparing the distributions of images between the training and synthetic groups. RESULTS: Synthetic images generated from a common seed for a given sex and at successive calcification severity levels showed incremental and regional growth of calcification sites. CCC patterns for synthetic male and female images matched known sex-based differences, and individual CCC growth in synthetic images was consistent with previously observed population trends. These trends in the synthetic images were also quantified by structural similarity scores. Synthetic images generated from different input seeds further showed individual variance in specific regions and trajectories of CCC accumulation. CONCLUSION: This study inferred individual progression of CCC accumulation from uncalcified to severely calcified using cross-sectional image data. This information can inform computational models of the changing chest wall biomechanics with age, and the GAN-based technique shows potential for inferring longitudinal data from population trends in other clinical areas.
Assuntos
Cartilagem Costal , Fenômenos Biomecânicos , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Masculino , Tomografia Computadorizada por Raios X/métodosRESUMO
BACKGROUND: CT contrast media improves vessel visualization but can also confound calcification measurements. We evaluated variance in aorta attenuation from varied contrast-enhancement scans, and quantified expected plaque detection errors when thresholding for calcification. METHODS: We measured aorta attenuation (AoHU) in central vessel regions from 10K abdominal CT scans and report AoHU relationships to contrast phase (non-contrast, arterial, venous, delayed), demographic variables (age, sex, weight), body location, and scan slice thickness. We also report expected plaque segmentation false-negative errors (plaque pixels misidentified as non-plaque pixels) and false-positive errors (vessel pixels falsely identified as plaque), comparing a uniform thresholding approach and a dynamic approach based on local mean/SD aorta attenuation. RESULTS: Females had higher AoHU than males in contrast-enhanced scans by 65/22/20 HU for arterial/venous/delayed phases (p < 0.001) but not in non-contrast scans (p > 0.05). Weight was negatively correlated with AoHU by 2.3HU/10kg but other predictors explained only small portions of intra-cohort variance (R2 < 0.1 in contrast-enhanced scans). Average AoHU differed by contrast phase, but considerable overlap was seen between distributions. Increasing uniform plaque thresholds from 130HU to 200HU/300HU/400HU produces respective false-negative plaque content losses of 35%/60%/75% from all scans with corresponding false-positive errors in arterial-phase scans of 95%/60%/15%. Dynamic segmentation at 3SD above mean AoHU reduces false-positive errors to 0.13% and false-negative errors to 8%, 25%, and 70% in delayed, venous, and arterial scans, respectively. CONCLUSION: CT contrast produces heterogeneous aortic enhancements not readily determined by demographic or scan protocol factors. Uniform CT thresholds for calcified plaques incur high rates of pixel classification errors in contrast-enhanced scans which can be minimized using dynamic thresholds based on local aorta attenuation. Care should be taken to address these errors and sex-based biases in baseline attenuation when designing automatic calcification detection algorithms intended for broad use in contrast-enhanced CTs.
Assuntos
Calcinose , Placa Aterosclerótica , Masculino , Feminino , Humanos , Placa Aterosclerótica/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Aorta , Algoritmos , Meios de ContrasteRESUMO
Measurements of visceral adipose tissue cross-sectional area and radiation attenuation from computed tomography (CT) scans provide useful information about risk and mortality. However, scan protocols vary, encompassing differing vertebra levels and utilizing differing phases of contrast enhancement. Furthermore, fat measurements have been extracted from CT using different Hounsfield Unit (HU) ranges. To our knowledge, there have been no large studies of healthy cohorts that reported reference values for visceral fat area and radiation attenuation at multiple vertebra levels, for different contrast phases, and using different fat HU ranges. Two-phase CT scans from 1,677 healthy, adult kidney donors (age 18-65) between 1999 and 2017, previously studied to determine healthy reference values for skeletal muscle measures, were utilized. Visceral adipose tissue cross-sectional area (VFA) and radiation attenuation (VFRA) measures were quantified using axial slices at T10 through L4 vertebra levels. T-tests were used to compare males and females, while paired t-tests were conducted to determine the effect (magnitude and direction) of (a) contrast enhancement and (b) different fat HU ranges on each fat measure at each vertebra level. We report the means, standard deviations, and effect sizes of contrast enhancement and fat HU range. Male and female VFA and VFRA were significantly different at all vertebra levels in both contrast and non-contrast scans. Peak VFA was observed at L4 in females and L2 in males, while peak VFRA was observed at L1 in both females and males. In general, non-contrast scans showed significantly greater VFA and VFRA compared to contrast scans. The average paired difference due to contrast ranged from 1.6 to - 8% (VFA) and 3.2 to - 3.0% (VFRA) of the non-contrast value. HU range showed much greater differences in VFA and VFRA than contrast. The average paired differences due to HU range ranged from - 5.3 to 22.2% (VFA) and - 5.9 to 13.6% (VFRA) in non-contrast scans, and - 4.4 to 20.2% (VFA) and - 4.1 to 12.6% (VFRA) in contrast scans. The - 190 to - 30 HU range showed the largest differences in both VFA (10.8% to 22.2%) and VFRA (7.6% to 13.6%) compared to the reference range (- 205 to - 51 HU). Incidentally, we found that differences in lung inflation result in very large differences in visceral fat measures, particularly in the thoracic region. We assessed the independent effects of contrast presence and fat HU ranges on visceral fat cross-sectional area and mean radiation attenuation, finding significant differences particularly between different fat HU ranges. These results demonstrate that CT measurements of visceral fat area and radiation attenuation are strongly dependent upon contrast presence, fat HU range, sex, breath cycle, and vertebra level of measurement. We quantified contrast and non-contrast reference values separately for males and females, using different fat HU ranges, for lumbar and thoracic CT visceral fat measures at multiple vertebra levels in a healthy adult US population.
Assuntos
Meios de Contraste/administração & dosagem , Gordura Intra-Abdominal/diagnóstico por imagem , Vértebras Lombares/diagnóstico por imagem , Adolescente , Adulto , Idoso , Estudos de Coortes , Meios de Contraste/análise , Feminino , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/diagnóstico por imagem , Tomografia Computadorizada por Raios X/instrumentação , Tomografia Computadorizada por Raios X/métodos , Estados Unidos , Adulto JovemRESUMO
BACKGROUND: Aortic wall calcification shows strong promise as a cardiovascular risk factor. While useful for visual enhancement of vascular tissue, enhancement creates heterogeneity between scans with and without contrast. We evaluated the relationship between aortic calcification in routine abdominal computed tomography scans (CT) with and without contrast. METHODS: Inclusion was limited to those with abdominal CT-scans with and without contrast enhancement within 120 days. Analytic Morphomics, a semi-automated computational image processing system, was used to provide standardized, granular, anatomically indexed measurements of aortic wall calcification from abdominal CT-scans. Aortic calcification area (ACA) and aortic wall calcification percent (ACP) and were the outcomes of interest. Multiple linear regression was used to evaluate the relationship of aortic measurements. Models were further controlled for age and sex. Stratification of measurements by vertebral level was also performed. RESULTS: A positive association was observed for non-contrast calcification in ACP ß 0.74 (95% CI 0.72, 0.76) and ACA ß 0.44 (95% 0.43, 0.45). Stratified results demonstrated the highest coefficient of determination at L2 for percent and L3 for area models [R2 0.91 (ACP) 0.74 (ACA)]. Adjusted lumber-level associations between non-contrast and contrast measurements ranged from (ß 0.69-0.82) in ACP and (ß 0.37-0.54) in ACA. CONCLUSION: A straightforward correction score for comparison of abdominal aortic calcification measurements in contrast-enhanced and non-contrast scans is discussed. Correction of aortic calcification from CT scans can reduce scan heterogeneity and will be instrumental in creating larger cardiovascular cohorts as well as cardiovascular risk surveillance programs.