RESUMO
Plaguing humans for more than two millennia, manifest on every continent studied, and with more than one billion patients having an attack in any year, migraine stands as the sixth most common cause of disability on the planet. The pathophysiology of migraine has emerged from a historical consideration of the "humors" through mid-20th century distraction of the now defunct Vascular Theory to a clear place as a neurological disorder. It could be said there are three questions: why, how, and when? Why: migraine is largely accepted to be an inherited tendency for the brain to lose control of its inputs. How: the now classical trigeminal durovascular afferent pathway has been explored in laboratory and clinic; interrogated with immunohistochemistry to functional brain imaging to offer a roadmap of the attack. When: migraine attacks emerge due to a disorder of brain sensory processing that itself likely cycles, influenced by genetics and the environment. In the first, premonitory, phase that precedes headache, brain stem and diencephalic systems modulating afferent signals, light-photophobia or sound-phonophobia, begin to dysfunction and eventually to evolve to the pain phase and with time the resolution or postdromal phase. Understanding the biology of migraine through careful bench-based research has led to major classes of therapeutics being identified: triptans, serotonin 5-HT1B/1D receptor agonists; gepants, calcitonin gene-related peptide (CGRP) receptor antagonists; ditans, 5-HT1F receptor agonists, CGRP mechanisms monoclonal antibodies; and glurants, mGlu5 modulators; with the promise of more to come. Investment in understanding migraine has been very successful and leaves us at a new dawn, able to transform its impact on a global scale, as well as understand fundamental aspects of human biology.
Assuntos
Encéfalo/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Cognição/fisiologia , Transtornos de Enxaqueca/fisiopatologia , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/metabolismo , Animais , Humanos , Transtornos de Enxaqueca/diagnóstico , Transtornos de Enxaqueca/metabolismo , Receptores de Serotonina/metabolismo , Receptor 5-HT1F de SerotoninaRESUMO
BACKGROUND: There is a bidirectional link between sleep and migraine, however causality is difficult to determine. This study aimed to investigate this relationship using data collected from a smartphone application. METHODS: Self-reported data from 11,166 global users (aged 18-81 years, mean: 41.21, standard deviation: 11.49) were collected from the Migraine Buddy application (Healint Pte. Ltd.). Measures included: start and end times of sleep and migraine attacks, and pain intensity. Bayesian regression models were used to predict occurrence of a migraine attack the next day based on users' deviations from average sleep, number of sleep interruptions, and hours slept the night before in those reporting ≥ 8 and < 25 migraine attacks on average per month. Conversely, we modelled whether attack occurrence and pain intensity predicted hours slept that night. RESULTS: There were 724 users (129 males, 412 females, 183 unknown, mean age = 41.88 years, SD = 11.63), with a mean monthly attack frequency of 9.94. More sleep interruptions (95% Highest Density Interval (95%HDI [0.11 - 0.21]) and deviation from a user's mean sleep (95%HDI [0.04 - 0.08]) were significant predictors of a next day attack. Total hours slept was not a significant predictor (95%HDI [-0.04 - 0.04]). Pain intensity, but not attack occurrence was a positive predictor of hours slept. CONCLUSIONS: Sleep fragmentation and deviation from typical sleep are the main drivers of the relationship between sleep and migraine. Having a migraine attack does not predict sleep duration, yet the pain associated with it does. This study highlights sleep as crucial in migraine management.
Assuntos
Transtornos de Enxaqueca , Sono , Feminino , Masculino , Humanos , Adulto , Teorema de Bayes , Duração do Sono , Transtornos de Enxaqueca/epidemiologia , DorRESUMO
BACKGROUND: Imaging migraine premonitory studies show increased midbrain activation consistent with the ventral tegmental area, an area involved in pain modulation and hedonic feeding. We investigated ventral tegmental area pharmacological modulation effects on trigeminovascular processing and consequent glycemic levels, which could be involved in appetite changes in susceptible migraine patients. METHODS: Serotonin and pituitary adenylate cyclase-activating polypeptide receptors immunohistochemistry was performed in ventral tegmental area parabrachial pigmented nucleus of male Sprague Dawley rats. In vivo trigeminocervical complex neuronal responses to dura mater nociceptive electrical stimulation, and facial mechanical stimulation of the ophthalmic dermatome were recorded. Changes in trigeminocervical complex responses following ventral tegmental area parabrachial pigmented nucleus microinjection of glutamate, bicuculline, naratriptan, pituitary adenylate cyclase-activating polypeptide-38 and quinpirole were measured, and blood glucose levels assessed pre- and post-microinjection. RESULTS: Glutamatergic stimulation of ventral tegmental area parabrachial pigmented nucleus neurons reduced nociceptive and spontaneous trigeminocervical complex neuronal firing. Naratriptan, pituitary adenylate cyclase-activating polypeptide-38 and quinpirole inhibited trigeminovascular spontaneous activity, and trigeminocervical complex neuronal responses to dural-evoked electrical and mechanical noxious stimulation. Trigeminovascular sensory processing through modulation of the ventral tegmental area parabrachial pigmented nucleus resulted in reduced circulating glucose levels. CONCLUSION: Pharmacological modulation of ventral tegmental area parabrachial pigmented nucleus neurons elicits changes in trigeminovascular sensory processing. The interplay between ventral tegmental area parabrachial pigmented nucleus activity and the sensory processing by the trigeminovascular system may be relevant to understand associated sensory and homeostatic symptoms in susceptible migraine patients.
Assuntos
Transtornos de Enxaqueca , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Ratos , Animais , Masculino , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Ratos Sprague-Dawley , Área Tegmentar Ventral , Glicemia , Quimpirol/farmacologia , Neurônios , PercepçãoRESUMO
Medication overuse headache is estimated to affect 2% of the population, and is ranked in the top 20 most disabling disorders due to its high level of disability. Several therapies used in the treatment of acute migraine are thought to be associated with medication overuse headache, including opioids and triptans. With limited treatment options, it is critical to determine the risk profile of novel therapies prior to their widespread use. The current study explores the potential medication overuse risk of two novel therapeutic drug classes, namely the ditans: 5-HT1F receptor agonists, and the gepants: calcitonin gene-related peptide receptor antagonists, in a preclinical model of medication overuse. Persistent exposure of mice to the 5-HT1F agonist LY344864, but not olcegepant produced a significant reduction in hind paw and orofacial mechanical withdrawal thresholds as a surrogate readout of allodynia. In agreement, only LY344864 induced neuroplastic changes in trigeminal sensory afferents, increasing calcitonin gene-related peptide expression and basal trigeminal nociception. Our data highlight a differential medication overuse headache risk profile for the ditan and gepant classes of drugs that has important implications for their clinical use and patient education to help reduce the burden of medication overuse headache.
Assuntos
Transtornos da Cefaleia Secundários/metabolismo , Transtornos de Enxaqueca/metabolismo , Medição da Dor/efeitos dos fármacos , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/metabolismo , Receptores de Serotonina/metabolismo , Animais , Antagonistas do Receptor do Peptídeo Relacionado ao Gene de Calcitonina/farmacologia , Antagonistas do Receptor do Peptídeo Relacionado ao Gene de Calcitonina/uso terapêutico , Carbazóis/farmacologia , Carbazóis/uso terapêutico , Fluorbenzenos/farmacologia , Fluorbenzenos/uso terapêutico , Transtornos da Cefaleia Secundários/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transtornos de Enxaqueca/tratamento farmacológico , Medição da Dor/métodos , Piperazinas/farmacologia , Piperazinas/uso terapêutico , Quinazolinas/farmacologia , Quinazolinas/uso terapêutico , Fatores de Risco , Receptor 5-HT1F de SerotoninaRESUMO
Cranial allodynia associated with spontaneous migraine is reported as either responsive to triptan treatment or to be predictive of lack of triptan efficacy. These conflicting results suggest that a single mechanism mediating the underlying neurophysiology of migraine symptoms is unlikely. The lack of a translational approach to study cranial allodynia reported in migraine patients is a limitation in dissecting potential mechanisms. Our objective was to study triptan-responsive cranial allodynia in migraine patients, and to develop an approach to studying its neural basis in the laboratory. Using nitroglycerine to trigger migraine attacks, we investigated whether cranial allodynia could be triggered experimentally, observing its response to treatment. Preclinically, we examined the cephalic response properties of central trigeminocervical neurons using extracellular recording techniques, determining changes to ongoing firing and somatosensory cranial-evoked sensitivity, in response to nitroglycerine followed by triptan treatment. Cranial allodynia was triggered alongside migraine-like headache in nearly half of subjects. Those who reported cranial allodynia accompanying their spontaneous migraine attacks were significantly more likely to have symptoms triggered than those that did not. Patients responded to treatment with aspirin or sumatriptan. Preclinically, nitroglycerine caused an increase in ongoing firing and hypersensitivity to intracranial-dural and extracranial-cutaneous (noxious and innocuous) somatosensory stimulation, reflecting signatures of central sensitization potentially mediating throbbing headache and cranial allodynia. These responses were aborted by a triptan. These data suggest that nitroglycerine can be used as an effective and reliable method to trigger cranial allodynia in subjects during evoked migraine, and the symptom is responsive to abortive triptan treatments. Preclinically, nitroglycerine activates the underlying neural mechanism of cephalic migraine symptoms, central sensitization, also predicting the clinical outcome to triptans. This supports a biological rationale that several mechanisms can mediate the underlying neurophysiology of migraine symptoms, with nitrergic-induced changes reflecting one that is relevant to spontaneous migraine in many migraineurs, whose symptoms of cranial allodynia are responsive to triptan treatment. This approach translates directly to responses in animals and is therefore a relevant platform to study migraine pathophysiology, and for use in migraine drug discovery.
Assuntos
Hiperalgesia/fisiopatologia , Transtornos de Enxaqueca/fisiopatologia , Nervo Trigêmeo/fisiologia , Adolescente , Adulto , Aspirina/uso terapêutico , Método Duplo-Cego , Humanos , Hiperalgesia/induzido quimicamente , Hiperalgesia/complicações , Hiperalgesia/tratamento farmacológico , Pessoa de Meia-Idade , Transtornos de Enxaqueca/induzido quimicamente , Transtornos de Enxaqueca/complicações , Transtornos de Enxaqueca/tratamento farmacológico , Nitroglicerina , Nervos Espinhais/fisiologia , Sumatriptana/uso terapêutico , Adulto JovemRESUMO
BACKGROUND: Migraine is a common debilitating condition whose main attributes are severe recurrent headaches with accompanying sensitivity to light and sound, nausea and vomiting. Migraine-related pain is a major cause of its accompanying disability and can encumber almost every aspect of daily life. MAIN BODY: Advancements in our understanding of the neurobiology of migraine headache have come in large from basic science research utilizing small animal models of migraine-related pain. In this current review, we aim to describe several commonly utilized preclinical models of migraine. We will discuss the diverse array of methodologies for triggering and measuring migraine-related pain phenotypes and highlight briefly specific advantages and limitations therein. Finally, we will address potential future challenges/opportunities to refine existing and develop novel preclinical models of migraine that move beyond migraine-related pain and expand into alternate migraine-related phenotypes. CONCLUSION: Several well validated animal models of pain relevant for headache exist, the researcher should consider the advantages and limitations of each model before selecting the most appropriate to answer the specific research question. Further, we should continually strive to refine existing and generate new animal and non-animal models that have the ability to advance our understanding of head pain as well as non-pain symptoms of primary headache disorders.
Assuntos
Transtornos de Enxaqueca , Modelos Animais , Animais , HumanosRESUMO
Chronic cerebral hypoperfusion is a key mechanism associated with white matter disruption in cerebral vascular disease and dementia. In a mouse model relevant to studying cerebral vascular disease, we have previously shown that cerebral hypoperfusion disrupts axon-glial integrity and the distribution of key paranodal and internodal proteins in subcortical myelinated axons. This disruption of myelinated axons is accompanied by increased microglia and cognitive decline. The aim of the present study was to investigate whether hypoperfusion impairs the functional integrity of white matter, its relation with axon-glial integrity and microglial number, and whether by targeting microglia these effects can be improved. We show that in response to increasing durations of hypoperfusion, the conduction velocity of myelinated fibres in the corpus callosum is progressively reduced and that paranodal and internodal axon-glial integrity is disrupted. The number of microglial cells increases in response to hypoperfusion and correlates with disrupted paranodal and internodal integrity and reduced conduction velocities. Further minocycline, a proposed anti-inflammatory and microglia inhibitor, restores white matter function related to a reduction in the number of microglia. The study suggests that microglial activation contributes to the structural and functional alterations of myelinated axons induced by cerebral hypoperfusion and that dampening microglia numbers/proliferation should be further investigated as potential therapeutic benefit in cerebral vascular disease.
Assuntos
Anti-Inflamatórios/uso terapêutico , Estenose das Carótidas , Gliose/tratamento farmacológico , Gliose/etiologia , Microglia/efeitos dos fármacos , Minociclina/uso terapêutico , Substância Branca/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Arginase/genética , Arginase/metabolismo , Axônios/patologia , Estenose das Carótidas/complicações , Estenose das Carótidas/tratamento farmacológico , Estenose das Carótidas/patologia , Corpo Caloso/efeitos dos fármacos , Corpo Caloso/patologia , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Antígeno Ki-67/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Glicoproteína Associada a Mielina/metabolismo , Fibras Nervosas/efeitos dos fármacos , Fibras Nervosas/fisiologia , Substância Branca/patologia , Substância Branca/fisiologiaRESUMO
The interaction between sleep and primary headaches has gained considerable interest due to their strong, bidirectional, clinical relationship. Several primary headaches demonstrate either a circadian/circannual rhythmicity in attack onset or are directly associated with sleep itself. Migraine and cluster headache both show distinct attack patterns and while the underlying mechanisms of this circadian variation in attack onset remain to be fully explored, recent evidence points to clear physiological, anatomical and genetic points of convergence. The hypothalamus has emerged as a key brain area in several headache disorders including migraine and cluster headache. It is involved in homeostatic regulation, including pain processing and sleep regulation, enabling appropriate physiological responses to diverse stimuli. It is also a key integrator of circadian entrainment to light, in part regulated by pituitary adenylate cyclase-activating peptide (PACAP). With its established role in experimental headache research the peptide has been extensively studied in relation to headache in both humans and animals, however, there are only few studies investigating its effect on sleep in humans. Given its prominent role in circadian entrainment, established in preclinical research, and the ability of exogenous PACAP to trigger attacks experimentally, further research is very much warranted. The current review will focus on the role of the hypothalamus in the regulation of sleep-wake and circadian rhythms and provide suggestions for the future direction of such research, with a particular focus on PACAP.
Assuntos
Ritmo Circadiano/fisiologia , Cefaleia/metabolismo , Hipotálamo/fisiologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Sono/fisiologia , Animais , Encéfalo/metabolismo , Cefaleia/terapia , Humanos , Dor/metabolismo , Manejo da Dor/métodosRESUMO
Migraine is a disabling brain disorder involving abnormal trigeminovascular activation and sensitization. Fasting or skipping meals is considered a migraine trigger and altered fasting glucose and insulin levels have been observed in migraineurs. Therefore peptides involved in appetite and glucose regulation including insulin, glucagon and leptin could potentially influence migraine neurobiology. We aimed to determine the effect of insulin (10U·kg-1), glucagon (100µg·200µl-1) and leptin (0.3, 1 and 3mg·kg-1) signaling on trigeminovascular nociceptive processing at the level of the trigeminocervical-complex and hypothalamus. Male rats were anesthetized and prepared for craniovascular stimulation. In vivo electrophysiology was used to determine changes in trigeminocervical neuronal responses to dural electrical stimulation, and phosphorylated extracellular signal-regulated kinases 1 and 2 (pERK1/2) immunohistochemistry to determine trigeminocervical and hypothalamic neural activity; both in response to intravenous administration of insulin, glucagon, leptin or vehicle control in combination with blood glucose analysis. Blood glucose levels were significantly decreased by insulin (p<0.001) and leptin (p<0.01) whereas glucagon had the opposite effect (p<0.001). Dural-evoked neuronal firing in the trigeminocervical-complex was significantly inhibited by insulin (p<0.001), glucagon (p<0.05) and leptin (p<0.01). Trigeminocervical-complex pERK1/2 cell expression was significantly decreased by insulin and leptin (both p<0.001), and increased by glucagon (p<0.001), when compared to vehicle control. However, only leptin affected pERK1/2 expression in the hypothalamus, significantly decreasing pERK1/2 immunoreactive cell expression in the arcuate nucleus (p<0.05). These findings demonstrate that insulin, glucagon and leptin can alter the transmission of trigeminal nociceptive inputs. A potential neurobiological link between migraine and impaired metabolic homeostasis may occur through disturbed glucose regulation and a transient hypothalamic dysfunction.
Assuntos
Glucagon/metabolismo , Insulina/metabolismo , Leptina/metabolismo , Transtornos de Enxaqueca/metabolismo , Neurônios/metabolismo , Núcleos do Trigêmeo/metabolismo , Analgésicos não Narcóticos/administração & dosagem , Animais , Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Núcleo Arqueado do Hipotálamo/metabolismo , Núcleo Arqueado do Hipotálamo/patologia , Glucagon/administração & dosagem , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Hipotálamo/patologia , Insulina/administração & dosagem , Leptina/administração & dosagem , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Transtornos de Enxaqueca/patologia , Transtornos de Enxaqueca/prevenção & controle , Vias Neurais/metabolismo , Vias Neurais/patologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Dor/metabolismo , Dor/patologia , Dor/prevenção & controle , Ratos Sprague-Dawley , Núcleos do Trigêmeo/patologiaRESUMO
Cerebral hypoperfusion is an early feature of Alzheimer's disease (AD) that influences the progression from mild cognitive impairment to dementia. Understanding the mechanism is of critical importance in the search for new effective therapies. We hypothesized that cerebral hypoperfusion promotes the accumulation of amyloid-ß (Aß) and degenerative changes in the brain and is a potential mechanism contributing to development of dementia. To address this, we studied the effects of chronic cerebral hypoperfusion induced by bilateral carotid artery stenosis on Aß peptide pools in a transgenic mouse model of AD (transgenic mice with Swedish, Dutch and Iowa mutations in human amyloid precursor protein (APP) (Tg-SwDI)). Cerebrovascular integrity was characterized by quantifying the occurrence of microinfarcts and haemorrhages and compared with wild-type mice without Aß. A significant increase in soluble Aß peptides (Aß40/42) was detected after 1 month of hypoperfusion in the parenchyma in parallel with elevated APP and APP proteolytic products. Following 3 months, a significant increase in insoluble Aß40/42 was determined in the parenchyma and vasculature. Microinfarct load was significantly increased in the Tg-SwDI as compared with wild-type mice and further exacerbated by hypoperfusion at 1 and 3 months. In addition, the number of Tg-SwDI hypoperfused mice with haemorrhages was increased compared with hypoperfused wild-type mice. Soluble parenchymal Aß was associated with elevated NADPH oxidase-2 (NOX2) which was exacerbated by 1-month hypoperfusion. We suggest that in response to hypoperfusion, increased Aß production/deposition may contribute to degenerative processes by triggering oxidative stress promoting cerebrovascular disruption and the development of microinfarcts.
Assuntos
Peptídeos beta-Amiloides/metabolismo , Isquemia Encefálica/complicações , Angiopatia Amiloide Cerebral/etiologia , Hemorragia Cerebral/etiologia , Infarto Cerebral/etiologia , Fragmentos de Peptídeos/metabolismo , Animais , Encéfalo/metabolismo , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Angiopatia Amiloide Cerebral/metabolismo , Angiopatia Amiloide Cerebral/patologia , Hemorragia Cerebral/metabolismo , Hemorragia Cerebral/patologia , Infarto Cerebral/metabolismo , Infarto Cerebral/patologia , Circulação Cerebrovascular/fisiologia , Doença Crônica , Modelos Animais de Doenças , Glicoproteínas de Membrana/metabolismo , Camundongos Transgênicos , NADPH Oxidase 2 , NADPH Oxidases/metabolismo , Estresse Oxidativo/fisiologia , Tecido Parenquimatoso/metabolismo , SolubilidadeRESUMO
Migraine is a very common, severe disabling condition that can last for days and strike multiple times per month. Attacks, often characterized by severe unilateral throbbing pain that is exacerbated by activity, are commonly preceded by several diverse symptoms including fatigue, irritability, and yawning. This premonitory (prodromal) phase represents the earliest identifiable feature of an attack that is a reliable predictor of ensuing headache. The diversity of these symptoms underlines the complex nature of migraine and focuses considerable attention on the hypothalamus due to its prominent role in homeostatic regulation allowing state dependent behavioral modifications. While multiple neurotransmitter and neuropeptide systems have been proposed to play a role in migraine, the current review will focus on the emerging role of the hypothalamic orexinergic system in primary headache disorders. Specifically the potential role of altered orexinergic signalling in premonitory symptomatology and the future potential of targeted orexinergic therapies that could with other approaches act during the premonitory phase to prevent the occurrence of the headache or reduce an individual's susceptibility to attacks by altering the brain's response to external and internal triggers.
Assuntos
Transtornos da Cefaleia Primários/fisiopatologia , Orexinas/metabolismo , Transtornos da Cefaleia Primários/metabolismo , HumanosRESUMO
A single pulse of transcranial magnetic stimulation has been shown to be effective for the acute treatment of migraine with and without aura. Here we aimed to investigate the potential mechanisms of action of transcranial magnetic stimulation, using a transcortical approach, in preclinical migraine models. We tested the susceptibility of cortical spreading depression, the experimental correlate of migraine aura, and further evaluated the response of spontaneous and evoked trigeminovascular activity of second order trigemontothalamic and third order thalamocortical neurons in rats. Single pulse transcranial magnetic stimulation significantly inhibited both mechanical and chemically-induced cortical spreading depression when administered immediately post-induction in rats, but not when administered preinduction, and when controlled by a sham stimulation. Additionally transcranial magnetic stimulation significantly inhibited the spontaneous and evoked firing rate of third order thalamocortical projection neurons, but not second order neurons in the trigeminocervical complex, suggesting a potential modulatory effect that may underlie its utility in migraine. In gyrencephalic cat cortices, when administered post-cortical spreading depression, transcranial magnetic stimulation blocked the propagation of cortical spreading depression in two of eight animals. These results are the first to demonstrate that cortical spreading depression can be blocked in vivo using single pulse transcranial magnetic stimulation and further highlight a novel thalamocortical modulatory capacity that may explain the efficacy of magnetic stimulation in the treatment of migraine with and without aura.
Assuntos
Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Enxaqueca com Aura/terapia , Neurônios/fisiologia , Tálamo/fisiopatologia , Estimulação Magnética Transcraniana/métodos , Nervo Trigêmeo/fisiopatologia , Animais , Gatos , Modelos Animais de Doenças , Estimulação Elétrica , Eletroencefalografia , Fluxometria por Laser-Doppler , Masculino , Ratos , Ratos Sprague-DawleyRESUMO
Migraine is a common and complex brain disorder. Although it is clear that head pain is a key manifestation of the disorder for most patients, what drives the activation of neuronal pain pathways in susceptible patients is less obvious. There is growing evidence that migraine pathophysiology may, in part, include dysfunction of subcortical structures. These include diencephalic and brainstem nuclei that can modulate the perception of activation of the trigeminovascular system, which carries sensory information from the cranial vasculature to the brain. Dysfunction of these nuclei, and their connections to other key brain centres, may contribute to the cascade of events that results in other symptoms of migraine - such as light and sound sensitivity - thus providing a comprehensive explanation of the neurobiology of the disorder.
Assuntos
Tronco Encefálico/fisiopatologia , Diencéfalo/fisiopatologia , Transtornos de Enxaqueca/fisiopatologia , Humanos , Vias Neurais/fisiopatologiaAssuntos
Cefaleia Histamínica , Sumatriptana , Animais , Barreira Hematoencefálica , Encéfalo , Permeabilidade , RatosRESUMO
Activation and sensitization of trigeminovascular nociceptive pathways is believed to contribute to the neural substrate of the severe and throbbing nature of pain in migraine. Endocannabinoids, as well as being physiologically analgesic, are known to inhibit dural trigeminovascular nociceptive responses. They are also involved in the descending modulation of cutaneous-evoked C-fiber spinal nociceptive responses from the brainstem. The purpose of this study was to determine whether endocannabinoids are involved in the descending modulation of dural and/or cutaneous facial trigeminovascular nociceptive responses, from the brainstem ventrolateral periaqueductal gray (vlPAG). CB1 receptor activation in the vlPAG attenuated dural-evoked Aδ-fiber neurons (maximally by 19%) and basal spontaneous activity (maximally by 33%) in the rat trigeminocervical complex, but there was no effect on cutaneous facial receptive field responses. This inhibitory vlPAG-mediated modulation was inhibited by specific CB1 receptor antagonism, given via the vlPAG, and with a 5-HT1B/1D receptor antagonist, given either locally in the vlPAG or systemically. These findings demonstrate for the first time that brainstem endocannabinoids provide descending modulation of both basal trigeminovascular neuronal tone and Aδ-fiber dural-nociceptive responses, which differs from the way the brainstem modulates spinal nociceptive transmission. Furthermore, our data demonstrate a novel interaction between serotonergic and endocannabinoid systems in the processing of somatosensory nociceptive information, suggesting that some of the therapeutic action of triptans may be via endocannabinoid containing neurons in the vlPAG.
Assuntos
Endocanabinoides/metabolismo , Dor/fisiopatologia , Substância Cinzenta Periaquedutal/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Receptores de Serotonina/metabolismo , Animais , Ácidos Araquidônicos/farmacologia , Bicuculina/administração & dosagem , Agonistas de Receptores de Canabinoides/farmacologia , Modelos Animais de Doenças , Endocanabinoides/farmacologia , Antagonistas de Receptores de GABA-A/administração & dosagem , Masculino , Microinjeções , Fibras Nervosas Mielinizadas/efeitos dos fármacos , Fibras Nervosas Mielinizadas/fisiologia , Dor/tratamento farmacológico , Dor/metabolismo , Substância Cinzenta Periaquedutal/efeitos dos fármacos , Alcamidas Poli-Insaturadas/farmacologia , Ratos , Ratos Sprague-Dawley , Tempo de Reação/efeitos dos fármacos , Receptor CB1 de Canabinoide/antagonistas & inibidores , Serotoninérgicos/farmacologia , Antagonistas da Serotonina/farmacologia , Pele/inervação , Núcleos do TrigêmeoRESUMO
Familial hemiplegic migraine type 1 (FHM-1) is a monogenic subtype of migraine with aura caused by missense mutations in the CACNA1A gene, which encodes the pore-forming α1 subunit of voltage-gated neuronal CaV2.1 (P/Q-type) calcium channels. Transgenic knock-in mice expressing the CACNA1A R192Q mutation that causes FHM-1 in patients show a greater susceptibility to cortical spreading depression, the likely underlying mechanism of typical human migraine aura. The aim of this study was to compare neuronal activation within the trigeminal pain pathways in response to nociceptive trigeminovascular stimulation in wild-type and R192Q knock-in mice. After sham surgery or electrical stimulation of the superior sagittal sinus for 2h, or stimulation preceded by treatment with naratriptan, mice underwent intracardiac perfusion, and the brain, including the brainstem, was removed. Fos expression was measured in the trigeminocervical complex (TCC) and the lateral (ventroposteromedial, ventrolateral), medial (parafascicular, centromedian) and posterior thalamic nuclei. In the TCC of wild-type animals, the number of Fos-positive cells increased significantly following dural stimulation compared to the sham control group (P<0.001) and decreased after naratriptan treatment (P<0.05). In R192Q knock-in mice, there was no significant difference between the stimulated and sham (P=0.10) or naratriptan pre-treated groups (P=0.15). The number of Fos-positive cells in the R192Q stimulated group was significantly lower compared to the wild-type stimulated mice (P<0.05). In the thalamus, R192Q mice tended to be more sensitive to stimulation compared to the sham control in the medial and posterior nuclei, and between the two strains of stimulated animals there was a significant difference in the centromedian (P<0.005), and posterior nuclei (P<0.05). The present study suggests that the FHM-1 mutation affects more rostral brain structures in this experimental paradigm, which offers a novel perspective on possible differential effects of mutations causing migraine in terms of phenotype-genotype correlations.
Assuntos
Canais de Cálcio/metabolismo , Neurônios/metabolismo , Nociceptividade/fisiologia , Seio Sagital Superior/metabolismo , Núcleos Talâmicos/metabolismo , Núcleos do Trigêmeo/metabolismo , Animais , Canais de Cálcio/genética , Ataxia Cerebelar/genética , Estimulação Elétrica , Técnicas de Introdução de Genes , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transtornos de Enxaqueca/genética , Mutação de Sentido Incorreto , Vias Neurais/efeitos dos fármacos , Vias Neurais/metabolismo , Neurônios/efeitos dos fármacos , Nociceptividade/efeitos dos fármacos , Piperidinas/farmacologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Agonistas do Receptor 5-HT1 de Serotonina/farmacologia , Seio Sagital Superior/efeitos dos fármacos , Núcleos Talâmicos/efeitos dos fármacos , Núcleo Inferior Caudal do Nervo Trigêmeo/efeitos dos fármacos , Núcleo Inferior Caudal do Nervo Trigêmeo/metabolismo , Núcleos do Trigêmeo/efeitos dos fármacos , Triptaminas/farmacologiaRESUMO
OBJECTIVE: The objective of the current article is to review the shared pathophysiological mechanisms which may underlie the clinical association between headaches and sleep disorders. BACKGROUND: The association between sleep and headache is well documented in terms of clinical phenotypes. Disrupted sleep-wake patterns appear to predispose individuals to headache attacks and increase the risk of chronification, while sleep is one of the longest established abortive strategies. In agreement, narcoleptic patients show an increased prevalence of migraine compared to the general population and specific familial sleep disorders have been identified to be comorbid with migraine with aura. CONCLUSION: The pathophysiology and pharmacology of headache and sleep disorders involves an array of neural networks which likely underlie their shared clinical association. While it is difficult to differentiate between cause and effect, or simply a spurious relationship the striking brainstem, hypothalamic and thalamic convergence would suggest a bidirectional influence.