Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Prog Polym Sci ; 33(8): 787-796, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19649142

RESUMO

In this review, we discuss the synthesis, characterization, physical properties, and applications of polymethacrylates and describe physical and biological structure-property correlations relevant to many high performance applications. We also track the advancement of material-property space from the 'traditional' mode of materials design to the emerging, state-of-the-art combinatorial and in silico methods. Particularly, this article places emphasis on recent advances in the automated combinatorial synthesis and development of high-throughput characterization methods. As a future perspective, we believe that the realization of combinatorial, high-throughput, and computational methods will allow for the rapid exploration of a vast polymethacrylate library property space.

2.
J Biomed Mater Res A ; 91(4): 975-84, 2009 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-19097152

RESUMO

This study evaluated the osteogenic differentiation of human mesenchymal stem cells (MSCs), on tyrosine-derived polycarbonates copolymerized with poly(ethylene glycol) (PEG) to determine their potential as a scaffold for bone tissue engineering applications. The addition of PEG in the backbone of polycarbonates has been shown to alter mechanical properties, degradation rates, degree of protein adsorption, and subsequent cell adhesion and motility in mature cell phenotypes. Its effect on MSC behavior is unknown. MSC morphology, motility, proliferation, and osteogenic differentiation were evaluated on polycarbonates containing 0-5% PEG over a 14 day culture. MSCs on polycarbonates containing 0% or 3% PEG content upregulated the expression of osteogenic markers as demonstrated by alkaline phosphatase activity and osteocalcin expression although at different stages in the 14 day culture. Cells on polycarbonates containing no PEG were characterized as having early onset of cell spreading and osteogenic differentiation. Cells on 3% PEG surfaces were delayed in cell spreading and osteogenic differentiation, but had the highest motility as compared with cells on substrates containing no PEG and substrates containing 5% PEG at early time points. Throughout the culture, cells on polycarbonates containing 5% PEG had the lowest levels of osteogenic markers, displayed poor cell-substrate adhesion, and established cell-cell aggregates. Thus, designing substrates with minute variations in PEG may serve as a tool to guide MSC adhesion and motility accompanying osteogenic differentiation, and may be beneficial for abundant bone tissue formation in vivo.


Assuntos
Materiais Biocompatíveis/farmacologia , Diferenciação Celular/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Polietilenoglicóis/farmacologia , Adsorção/efeitos dos fármacos , Fosfatase Alcalina/metabolismo , Materiais Biocompatíveis/química , Contagem de Células , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Humanos , Células-Tronco Mesenquimais/enzimologia , Osteocalcina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA