Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Genet Sel Evol ; 51(1): 44, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31412777

RESUMO

BACKGROUND: Experimental intercrosses between outbred founder populations are powerful resources for mapping loci that contribute to complex traits i.e. quantitative trait loci (QTL). Here, we present an approach and its accompanying software for high-resolution reconstruction of founder mosaic genotypes in the intercross offspring from such populations using whole-genome high-coverage sequence data on founder individuals (~ 30×) and very low-coverage sequence data on intercross individuals (< 0.5×). Sets of founder-line informative markers were selected for each full-sib family and used to infer the founder mosaic genotypes of the intercross individuals. The application of this approach and the quality of the estimated genome-wide genotypes are illustrated in a large F2 pedigree between two divergently selected lines of chickens. RESULTS: We describe how we obtained whole-genome genotype data for hundreds of individuals in a cost- and time-efficient manner by using a Tn5-based library preparation protocol and an imputation algorithm that was optimized for this application. In total, 7.6 million markers segregated in this pedigree and, within each full-sib family, between 10.0 and 13.7% of these were fully informative, i.e. fixed for alternative alleles in the founders from the divergent lines, and were used for reconstruction of the offspring mosaic genotypes. The genotypes that were estimated based on the low-coverage sequence data were highly consistent (> 95% agreement) with those obtained using individual single nucleotide polymorphism (SNP) genotyping. The estimated resolution of the inferred recombination breakpoints was relatively high, with 50% of them being defined on regions shorter than 10 kb. CONCLUSIONS: A method and software for inferring founder mosaic genotypes in intercross offspring from low-coverage whole-genome sequencing in pedigrees from heterozygous founders are described. They provide high-quality, high-resolution genotypes in a time- and cost-efficient manner. The software is freely available at https://github.com/CarlborgGenomics/Stripes .


Assuntos
Galinhas/genética , Técnicas de Genotipagem , Sequenciamento Completo do Genoma , Animais , Cruzamento , Custos e Análise de Custo , Cruzamentos Genéticos , Conjuntos de Dados como Assunto , Feminino , Efeito Fundador , Técnicas de Genotipagem/economia , Masculino , Linhagem , Polimorfismo de Nucleotídeo Único , Software , Sequenciamento Completo do Genoma/economia
2.
Mol Biol Evol ; 34(10): 2678-2689, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28957504

RESUMO

The ability of a population to adapt to changes in their living conditions, whether in nature or captivity, often depends on polymorphisms in multiple genes across the genome. In-depth studies of such polygenic adaptations are difficult in natural populations, but can be approached using the resources provided by artificial selection experiments. Here, we dissect the genetic mechanisms involved in long-term selection responses of the Virginia chicken lines, populations that after 40 generations of divergent selection for 56-day body weight display a 9-fold difference in the selected trait. In the F15 generation of an intercross between the divergent lines, 20 loci explained >60% of the additive genetic variance for the selected trait. We focused particularly on fine-mapping seven major QTL that replicated in this population and found that only two fine-mapped to single, bi-allelic loci; the other five contained linked loci, multiple alleles or were epistatic. This detailed dissection of the polygenic adaptations in the Virginia lines provides a deeper understanding of the range of different genome-wide mechanisms that have been involved in these long-term selection responses. The results illustrate that the genetic architecture of a highly polygenic trait can involve a broad range of genetic mechanisms, and that this can be the case even in a small population bred from founders with limited genetic diversity.


Assuntos
Galinhas/genética , Herança Multifatorial/genética , Aclimatação/genética , Adaptação Fisiológica/genética , Alelos , Animais , Peso Corporal/genética , Cruzamento , Mapeamento Cromossômico , Cruzamentos Genéticos , Epistasia Genética/genética , Loci Gênicos/genética , Variação Genética/genética , Genética Populacional/métodos , Polimorfismo Genético/genética , Locos de Características Quantitativas , Seleção Genética/genética
3.
J Anim Breed Genet ; 2018 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-29926987

RESUMO

Growth is a complex and dynamic process that may be measured at a specific point or over a period of time. Compared was the growth of male and female chickens over a three-generation period. Involved were red junglefowl (RJF; Gallus gallus), a line of White Plymouth Rock chickens (LWS; Gallus gallus domesticus) selected for low body weight, and their reciprocal F1 and F2 crosses. In both sexes, Gompertz's description of growth showed that RJF had significantly lower asymptotes, earlier inflection points, and faster growth rates than LWS. Heterosis for these measures was positive for asymptote and negative for growth rate and inflection point. The RJF commenced egg production at a significantly younger age and lower body weight than LWS. Although F1 and F2 reciprocal crosses were similar for body weight and for age at first egg, the F1 reciprocal crosses began lay at significantly younger ages than the F2 crosses and parental lines. When viewed on a physiological basis where age and body weight were simultaneously standardized, both parental lines and reciprocal F1 and F2 crosses had differing rapid and lag growth phases. Overall, sexual dimorphism increased in all populations from hatch to sexual maturity. The LWS males had a longer growth period consistent with their female counterparts who became sexually mature at older ages. Comprehensively, these results indicate additive and nonadditive genetic variation for distinct growth patterns and changes in resource allocation strategies over time.

4.
BMC Genomics ; 18(1): 99, 2017 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-28100171

RESUMO

BACKGROUND: Long-term selection experiments provide a powerful approach to gain empirical insights into adaptation, allowing researchers to uncover the targets of selection and infer their contributions to the mode and tempo of adaptation. Here we implement a pooled genome re-sequencing approach to investigate the consequences of 39 generations of bidirectional selection in White Leghorn chickens on a humoral immune trait: antibody response to sheep red blood cells. RESULTS: We observed wide genome involvement in response to this selection regime. Many genomic regions were highly differentiated resulting from this experimental selection regime, an involvement of up to 20% of the chicken genome (208.8 Mb). While genetic drift has certainly contributed to this, we implement gene ontology, association analysis and population simulations to increase our confidence in candidate selective sweeps. Three strong candidate genes, MHC, SEMA5A and TGFBR2, are also presented. CONCLUSIONS: The extensive genomic changes highlight the polygenic genetic architecture of antibody response in these chicken populations, which are derived from a common founder population, demonstrating the extent of standing immunogenetic variation available at the onset of selection.


Assuntos
Galinhas , Variação Genética , Genômica , Imunidade Humoral/genética , Seleção Genética , Alelos , Animais , Eritrócitos/imunologia , Evolução Molecular , Antígenos de Histocompatibilidade/genética , Receptores de Fatores de Crescimento Transformadores beta/genética , Ovinos/sangue
5.
Biol Lett ; 11(10)2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26510672

RESUMO

Mitochondrial genomes represent a valuable source of data for evolutionary research, but studies of their short-term evolution have typically been limited to invertebrates, humans and laboratory organisms. Here we present a detailed study of 12 mitochondrial genomes that span a total of 385 transmissions in a well-documented 50-generation pedigree in which two lineages of chickens were selected for low and high juvenile body weight. These data allowed us to test the hypothesis of time-dependent evolutionary rates and the assumption of strict maternal mitochondrial transmission, and to investigate the role of mitochondrial mutations in determining phenotype. The identification of a non-synonymous mutation in ND4L and a synonymous mutation in CYTB, both novel mutations in Gallus, allowed us to estimate a molecular rate of 3.13 × 10(-7) mutations/site/year (95% confidence interval 3.75 × 10(-8)-1.12 × 10(-6)). This is substantially higher than avian rate estimates based upon fossil calibrations. Ascertaining which of the two novel mutations was present in an additional 49 individuals also revealed an instance of paternal inheritance of mtDNA. Lastly, an association analysis demonstrated that neither of the point mutations was strongly associated with the phenotypic differences between the two selection lines. Together, these observations reveal the highly dynamic nature of mitochondrial evolution over short time periods.


Assuntos
Evolução Biológica , Galinhas/genética , DNA Mitocondrial/genética , Mitocôndrias/genética , Animais , Animais Recém-Nascidos , Peso Corporal , Feminino , Genoma Mitocondrial , Masculino , Taxa de Mutação , Linhagem , Fatores de Tempo
6.
Artigo em Inglês | MEDLINE | ID: mdl-26260898

RESUMO

Chickens selected for low (LWS) and high (HWS) juvenile body weight (BW) for 55 generations differ in BW by 10-fold at selection age. High (HWR) and low (LWR) body weight-relaxed lines have been random-bred since the 46th generation. Our objective was to evaluate the developmental and nutritional regulation of pancreatic mRNA abundance of pancreatic and duodenal homeobox 1 (PDX1), preproinsulin (PPI), preproglucagon (PPG), and glucose transporter 2 (GLUT2). At day of hatch (DOH) and days 1, 3, 7, and 15 (D1, 3, 7 and 15, respectively), pancreas was collected and real time PCR was performed in Experiment 1. In Experiment 2, HWS and LWS were fed or delayed access to food for 72 h post-hatch, and pancreas collected at D15. There was an interaction of line and age for GLUT2 (P=0.001), PPI (P<0.0001), PPG (P=0.034), and PDX1 (P<0.0001). Expression was greater in chicks from LWR and LWS than HWR and HWS. There was an interaction of line and nutrition on PPG (P<0.0001) and GLUT2 (P=0.001) mRNA, where expression was similar among chicks that were fed but greater in LWS than HWS when chicks were delayed access to food. Thus, the first two weeks is important for maturation of pancreatic endocrine function. Long-term selection for BW is associated with differences in pancreas development, and delaying access to food at hatch may have persisting effects on glucose regulatory function.


Assuntos
Proteínas Aviárias/genética , Peso Corporal/genética , Galinhas/genética , Regulação da Expressão Gênica no Desenvolvimento , Glucagon/genética , Transportador de Glucose Tipo 2/genética , Fenômenos Fisiológicos da Nutrição Animal , Animais , Animais Recém-Nascidos , Cruzamento , Galinhas/crescimento & desenvolvimento , Feminino , Alimentos , Masculino , Pâncreas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Seleção Genética , Fatores de Tempo , Regulação para Cima/genética
7.
Poult Sci ; 94(7): 1711-7, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26009754

RESUMO

Housing systems used in the production of poultry meat vary worldwide dependent on climate, land availability, and other resources essential for production. Reported here are comparisons between pen and cage rearing (the housing system, denoted HS: ), line crosses LC: ), two native Chinese lines (EM males were mated to Y1 and Y2 and their offspring denoted as EMY1 and EMY2), and sex in determining broiler traits. At hatch, 320 males and 320 females from each LC (giving a total of 1,280 chicks) were randomly assigned within each subgroup to 16 battery pens. There were 4 replicates for each combination of LC by sex. On d 28, half of the chicks were transferred to indoor floor pens, and the others were raised in single cages from d 29 to 91. Weekly body weights, livability, and feed conversion ratios ( FCR: ) were obtained to d 91, the age at which the broilers were slaughtered for carcass measurements. The caged males and females were heavier (P < 0.05) than their penned counterparts (2,292 vs 2,219 g). Except for females from line EMY1 (94.9%), the livability for each unit from 1 to 28 d, and 29 to 91 d was greater than 95%. Penned EMY2 broilers had the highest FCR (3.02), whereas penned EMY1 broilers had the lowest FCR (2.96) among the housing systems by LC combinations (P < 0.05). Caged chickens had thicker subcutaneous fat (7.24 mm), a higher percentages of abdominal fat (5.01%) and liver mass (3.13%) , but lower eviscerated carcass (60.63%) and breast muscle weights (pectoralis major and minor, 17.10%). Males were heavier and had higher percentages of leg muscle (boneless drum plus thigh, 24.22%) and heart muscle (1.08%) than the females (P < 0.05). However, the females had thicker subcutaneous fat (7.19 mm) and higher percentages of carcass weight (87.28%), breast muscle (18.11%), abdominal fat (6.54%), and liver mass (3.15%) than males. Penned females had the highest percentage of breast muscle (18.94%), and caged females had the highest percentage of liver mass (3.72%). Females of EMY1 had the highest percentage of breast muscle (18.40%). Generally, the housing system employed and the sex of the broilers greatly affect the carcass traits.


Assuntos
Galinhas/fisiologia , Abrigo para Animais , Carne/análise , Animais , Galinhas/genética , Galinhas/crescimento & desenvolvimento , China , Feminino , Masculino , Distribuição Aleatória , Fatores Sexuais
8.
Animals (Basel) ; 14(10)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38791704

RESUMO

Long-term divergent selection from a common founder population for a single trait-antibody response to sheep erythrocytes 5 days post-injection-has resulted in two distinct lines of White Leghorn chickens with a well-documented difference in antibody titers: high (HAS)- and low (LAS)-antibody selected lines. Subpopulations-high (HAR)- and low (LAR)-antibody relaxed-were developed from generation 24 of the selected lines to relax selection. The objective of the current experiment was to determine if this long-term selection and relaxation of selection impacted the growth of two organs important to chicken immunity: the spleen and the bursa of Fabricius. Spleens and bursae were obtained from ten chickens per line at nine timepoints (E18, D0, D6, D13, D20, D35, D49, D63, and D91) throughout their rapid growth phase and presented as a percent of body weight. Significance was set at p ≤ 0.05. For the spleen, all lines consistently increased in size relative to body weight to D49, followed by a consistent decline. All lines had a similar growth pattern, but HAS spleens grew faster than LAS spleens. For the bursa, LAS was smaller than the other three lines as an embryo and also smaller than HAS through D63. In the selected lines, bursa weight peaked at D35, whereas the relaxed lines peaked at D49. By D91, there was no difference between lines. Artificial and natural selection, represented by the long-term selected and relaxed antibody lines, resulted in differences in the growth patterns and relative weights of the spleen and bursa of Fabricius.

9.
PLoS One ; 19(5): e0295109, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38739572

RESUMO

The genetic complexity of polygenic traits represents a captivating and intricate facet of biological inheritance. Unlike Mendelian traits controlled by a single gene, polygenic traits are influenced by multiple genetic loci, each exerting a modest effect on the trait. This cumulative impact of numerous genes, interactions among them, environmental factors, and epigenetic modifications results in a multifaceted architecture of genetic contributions to complex traits. Given the well-characterized genome, diverse traits, and range of genetic resources, chicken (Gallus gallus) was employed as a model organism to dissect the intricate genetic makeup of a previously identified major Quantitative Trait Loci (QTL) for body weight on chromosome 1. A multigenerational advanced intercross line (AIL) of 3215 chickens whose genomes had been sequenced to an average of 0.4x was analyzed using genome-wide association study (GWAS) and variance-heterogeneity GWAS (vGWAS) to identify markers associated with 8-week body weight. Additionally, epistatic interactions were studied using the natural and orthogonal interaction (NOIA) model. Six genetic modules, two from GWAS and four from vGWAS, were strongly associated with the studied trait. We found evidence of both additive- and non-additive interactions between these modules and constructed a putative local epistasis network for the region. Our screens for functional alleles revealed a missense variant in the gene ribonuclease H2 subunit B (RNASEH2B), which has previously been associated with growth-related traits in chickens and Darwin's finches. In addition, one of the most strongly associated SNPs identified is located in a non-coding region upstream of the long non-coding RNA, ENSGALG00000053256, previously suggested as a candidate gene for regulating chicken body weight. By studying large numbers of individuals from a family material using approaches to capture both additive and non-additive effects, this study advances our understanding of genetic complexities in a highly polygenic trait and has practical implications for poultry breeding and agriculture.


Assuntos
Galinhas , Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Animais , Galinhas/genética , Galinhas/crescimento & desenvolvimento , Peso Corporal/genética , Polimorfismo de Nucleotídeo Único , Epistasia Genética , Fenótipo , Feminino , Herança Multifatorial , Masculino
10.
Poult Sci ; 103(9): 103972, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38936074

RESUMO

White Leghorn chickens from a common founder population have been divergently selected for high (HAS) or low (LAS) antibody responses to sheep red blood cells (SRBC) for 49 generations resulting in 2 diverse lines for this trait. Much has been studied in these two lines; however, the impact of these selection pressures on cytokine and chemokine expression is not fully understood. The purpose of this study is to determine if selection for antibody response to SRBC impacts cytokine and chemokine expression in peripheral blood leukocytes (PBL) and spleen from HAS and LAS chickens. Total RNA was isolated from PBL and spleen after which mRNA expression of cytokines (IL4, IL6, IL10, TGF-ß4) and chemokines (CXCL8, CCL4) were determined by quantitative real-time RT-PCR (qRT-PCR). The data were analyzed using Student's t test comparing HAS and LAS (P < 0.05) and are reported as corrected 40-CT. PBL and spleen samples were analyzed separately. With respect to PBL, expression of IL6 was higher (P < 0.05) in PBL isolated from LAS chickens compared to those from the HAS line whereas there were no differences (P > 0.05) in IL4, IL10, CXCL8, CCL4, or TGF-ß4. The cytokine and chemokine mRNA expression profiles were different in the spleen between the two lines. IL4 and CXCL8 expression were higher (P < 0.05) in spleen samples from HAS chickens than LAS. The expression of IL6, IL10, CCL4, or TGF-ß4 in the spleens did not differ (P > 0.05) between the lines. The data indicate that selection for specific antibody responses to SRBC impacts the cytokine and chemokine expression profile in PBL and spleens but in different ways in HAS and LAS. These studies provide insight into the influence that selection pressures for antibody responses have on different immune response components, specifically cytokines and chemokines typically involved in the innate response.

11.
Poult Sci ; 103(4): 103538, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387293

RESUMO

The early posthatch period is crucial to intestinal development, shaping long-term growth, metabolism, and health of the chick. The objective of this study was to determine the effect of genetic selection on morphological characteristics and gene expression during early intestinal development. Populations of White Plymouth Rocks have been selected for high weight (HWS) and low weight (LWS) for over 63 generations, and some LWS display symptoms of anorexia. Intestinal structure and function of these populations were compared to a commercial broiler Cobb 500 (Cobb) during the perihatch period. Egg weights, yolk-free embryo BW, yolk weights, and jejunal samples from HWS, LWS, and Cobb were collected on embryonic day (e) 17, e19, day of hatch, day (d) 3, d5, and d7 posthatch for histology and gene expression analysis. The RNAscope in-situ hybridization method was used to localize expression of the stem cell marker, olfactomedin 4 (Olfm4). Villus height (VH), crypt depth (CD), and VH/CD were measured from Olfm4 stained images using ImageJ. mRNA abundance for Olfm4, stem cell marker Lgr5, peptide transporter PepT1, goblet cell marker Muc2, marker of proliferation Ki67, and antimicrobial peptide LEAP2 were examined. Two-factor ANOVA was performed for measurements and Turkey's HSD was used for mean separation when appropriate. Cobb were heaviest and LWS the lightest (P < 0.01). at each timepoint. VH increased in Cobb and CD increased in HWS compared to LWS (P < 0.01). PepT1 mRNA was upregulated in LWS (P < 0.01), and Muc2 mRNA was decreased in both HWS and LWS compared to Cobb (P < 0.01). Selection for high or low 8-wk body weight has caused differences in intestinal gene expression and morphology when compared to a commercial broiler.


Assuntos
Galinhas , Duodeno , Animais , Hibridização In Situ/veterinária , Duodeno/metabolismo , RNA Mensageiro/genética , Peso Corporal
12.
Front Physiol ; 14: 1294560, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38239884

RESUMO

Histomonas meleagridis, a protozoan parasite, induces blackhead disease (histomoniasis) in poultry. During hatching, chicks from lines divergently selected for high (HAS) and low (LAS) antibody responses to sheep red blood cells were divided into two groups, each of HAS and LAS, and placed in pens with wood shavings as litter. Feed and water were allowed ad libitum. Half of the chicks from each line had Limosilactobacillus reuteri (L. reuteri) inoculated to their drinking water. On day 18, all chicks were given a transcloacal inoculation of 100,000 H. meleagridis cells. Then, 10 days later, they were euthanized, followed by collection of tissues from the brain, cecal tonsil, ceca, liver, thymus, and spleen for qPCR analyses of cytokines involved in immunological development. Changes in cytokine expressions were most numerous in the cecal tonsil, ceca, and liver. In the absence of a functional medication for control of histomoniasis, L. reuteri and/or its secretory product, reuterin, might serve, in some genetic populations, as a means to reduce the impact of histomoniasis in chickens. The data demonstrate that L. reuteri treatment had tissue specificity between the two genetic lines, in which the effects were targeted primarily toward the cecal tonsil, ceca, and liver, which are the primary tissue targets of the parasite (H. meleagridis), as well as the thymus and spleen. However, interactions among main effects reflect that responses to inflammatory markers observed in tissues for one genetic line may not be observed in another.

13.
Poult Sci ; 101(3): 101621, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34995879

RESUMO

The chicken MHCY region contains members of several gene families including a family of highly polymorphic MHC class I genes that are structurally distinct from their classical class I gene counterparts. Genetic variability at MHCY could impart variability in immune responses, but robust tests for whether or not this occurs have been lacking. Here we defined the MHCY genotypes present in 2 sets of chicken lines selected for high or low antibody response, the Virginia Tech (VT) HAS and LAS, and the Wageningen University (WU) HA and LA lines. Both sets were developed under long-term bidirectional selection for differences in antibody responses following immunization with the experimental antigen sheep red blood cells. Lines in which selection was relaxed (VT HAR and LAR) or lacking (WU C) provided controls. We looked for evidence of association between MHCY genotypes and antibody titers. Chickens were typed for MHCY using a recently developed method based on a multilocus short tandem repeat sequence found across MHCY haplotypes. Five MHCY haplotypes were found segregating in the VT HAS and LAS lines. One haplotype was present only in HAS chickens, and another was present only in LAS chickens with distribution of the remaining 3 haplotypes differing significantly between the lines. In the WU HA and LA lines, there was a similar MHCY asymmetry. The control populations lacked similar asymmetries. These observations support the likelihood of MHCY genetics affecting heritable antibody responses and provide a basis for further investigations into the role of MHCY region genes in guiding immune responses in chickens.


Assuntos
Formação de Anticorpos , Galinhas , Animais , Galinhas/genética , Eritrócitos , Genótipo , Haplótipos , Ovinos/genética
14.
mSystems ; 7(1): e0126121, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35014869

RESUMO

Multiomic analyses reported here involved two lines of chickens, from a common founder population, that had undergone long-term selection for high (HWS) or low (LWS) 56-day body weight. In these lines that differ by around 15-fold in body weight, we observed different compositions of intestinal microbiota in the holobionts and variation in DNA methylation, mRNA expression, and microRNA profiles in the ceca. Insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) was the most upregulated gene in HWS ceca with its expression likely affected by the upregulation of expression of gga-miR-2128 and a methylated region near its transcription start site (388 bp). Correlation analysis showed that IGF2BP1 expression was associated with an abundance of microbes, such as Lactobacillus and Methanocorpusculum. These findings suggest that IGF2BP1 was regulated in the hologenome in adapting to long-term artificial selection for body weight. Our study provides evidence that adaptation of the holobiont can occur in the microbiome as well as in the epigenetic profile of the host. IMPORTANCE The hologenome concept has broadened our perspectives for studying host-microbe coevolution. The multiomic analyses reported here involved two lines of chickens, from a common founder population, that had undergone long-term selection for high (HWS) or low (LWS) 56-day body weight. In these lines that differ by around 15-fold in body weight, we observed different compositions of intestinal microbiota in the holobionts, and variation in DNA methylation, mRNA expression, and microRNA profiles in ceca. The insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) was the most upregulated gene in HWS ceca with its expression likely affected by a methylated region near its transcription start site and the upregulation of expression of gga-miR-2128. Correlation analysis also showed that IGF2BP1 expression was associated with the abundance of microbes, such as Lactobacillus and Methanocorpusculum. These findings suggest that IGF2BP1 was regulated in the hologenome in response to long-term artificial selection for body weight. Our study shows that the holobiont may adapt in both the microbiome and the host's epigenetic profile.


Assuntos
Microbioma Gastrointestinal , MicroRNAs , Somatomedinas , Animais , Galinhas/genética , Peso Corporal/genética , RNA Mensageiro/genética
15.
mSphere ; 7(6): e0029522, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36317895

RESUMO

Usutu virus (USUV, Flaviviridae) is an emerging mosquito-borne virus that has been implicated in neuroinvasive disease in humans and epizootic deaths in wild birds. USUV is maintained in an enzootic cycle between ornithophilic mosquitoes, primarily Culex spp., and wild birds, predominantly passerine species. However, limited experimental data exist on the species competent for USUV transmission. Here, we demonstrate that house sparrows are susceptible to multiple USUV strains. Our study also revealed that Culex quinquefasciatus mosquitoes are susceptible to USUV, with a significantly higher infection rate for the Netherlands 2016 USUV strain compared to the Uganda 2012 USUV strain at 50% and 19%, respectively. To assess transmission between avian host and mosquito vector, we allowed mosquitoes to feed on either juvenile chickens or house sparrows inoculated with USUV. Both bird models transmitted USUV to C. quinquefasciatus mosquitoes. Linear regression analyses indicated that C. quinquefasciatus infection rates were positively correlated with avian viremia levels, with 3 to 4 log10 PFU/mL representing the minimum avian viremia threshold for transmission to mosquitoes. Based on the viremia required for transmission, house sparrows were estimated to more readily transmit the Netherlands 2016 strain compared to the Uganda 2012 strain. These studies provide insights on a competent reservoir host of USUV. IMPORTANCE Usutu virus (USUV) is a zoonotic mosquito-borne virus that can cause neuroinvasive disease, including meningitis and encephalitis, in humans and has resulted in hundreds of thousands of deaths in wild birds. The perpetuation of USUV in nature is dependent on transmission between Culex spp. mosquitoes and various avian species. To date, few experimental data exist for determining which bird species are important for the maintenance of USUV. Our studies showed that house sparrows can transmit infectious Usutu virus, indicating their role as a competent host species. By identifying reservoir species of USUV, we can predict areas of USUV emergence and mitigate its impacts on global human and wildlife health.


Assuntos
Culex , Culicidae , Humanos , Animais , Viremia , Galinhas , População Norte-Americana
16.
Front Microbiol ; 13: 916280, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35847106

RESUMO

The host and its symbiotic bacteria form a biological entity, holobiont, in which they share a dynamic connection characterized by symbiosis, co-metabolism, and coevolution. However, how these collaborative relationships were maintained over evolutionary time remains unclear. In this research, the small non-coding RNA (sncRNA) profiles of cecum and their bacteria contents were measured from lines of chickens that have undergone long-term selection for high (HWS) or low (LWS) 56-day body weight. The results from these lines that originated from a common founder population and maintained under the same husbandry showed an association between host intestinal sncRNA expression profile (miRNA, lncRNA fragment, mRNA fragment, snoRNA, and snRNA) and intestinal microbiota. Correlation analyses suggested that some central miRNAs and mRNA fragments had interactions with the abundance of intestinal microbial species and microbiota functions. miR-6622-3p, a significantly differentially expressed (DE) miRNA was correlated with a body weight gain related bacterium, Alistipes putredinis. Our results showed that host sncRNAs may be mediators of interaction between the host and its intestinal microbiome. This provides additional clue for holobiont concepts.

17.
Emerg Microbes Infect ; 10(1): 725-738, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33769213

RESUMO

Usutu virus (USUV; family: Flaviviridae, genus: Flavivirus), is an emerging zoonotic arbovirus that causes severe neuroinvasive disease in humans and has been implicated in the loss of breeding bird populations in Europe. USUV is maintained in an enzootic cycle between ornithophilic mosquitos and wild birds. As a member of the Japanese encephalitis serocomplex, USUV is closely related to West Nile virus (WNV) and St. Louis encephalitis virus (SLEV), both neuroinvasive arboviruses endemic in wild bird populations in the United States. An avian model for USUV is essential to understanding zoonotic transmission. Here we describe the first avian models of USUV infection with the development of viremia. Juvenile commercial ISA Brown chickens were susceptible to infection by multiple USUV strains with evidence of cardiac lesions. Juvenile chickens from two chicken lines selected for high (HAS) or low (LAS) antibody production against sheep red blood cells showed markedly different responses to USUV infection. Morbidity and mortality were observed in the LAS chickens, but not HAS chickens. LAS chickens had significantly higher viral titers in blood and other tissues, as well as oral secretions, and significantly lower development of neutralizing antibody responses compared to HAS chickens. Mathematical modelling of virus-host interactions showed that the viral clearance rate is a stronger mitigating factor for USUV viremia than neutralizing antibody response in this avian model. These chicken models provide a tool for further understanding USUV pathogenesis in birds and evaluating transmission dynamics between avian hosts and mosquito vectors.


Assuntos
Infecções por Flavivirus/virologia , Flavivirus/fisiologia , Flavivirus/patogenicidade , Doenças das Aves Domésticas/virologia , Eliminação de Partículas Virais , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Galinhas , Culicidae/fisiologia , Culicidae/virologia , Flavivirus/genética , Infecções por Flavivirus/imunologia , Infecções por Flavivirus/mortalidade , Interações Hospedeiro-Patógeno , Humanos , Modelos Teóricos , Mosquitos Vetores/fisiologia , Mosquitos Vetores/virologia , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/mortalidade , Ovinos , Virulência
18.
Genes (Basel) ; 11(6)2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32521737

RESUMO

Bi-directional selection for increased and decreased 56-day body weights (BW56) has been applied to two lines of White Plymouth Rock chickens-the Virginia high (HWS) and low (LWS) body weight lines. Correlated responses have been observed, including negative effects on traits related to fitness. Here, we use high and low body weight as proxies for fitness. On a genome-wide level, relaxed lines (HWR, LWR) bred from HWS and LWS purged some genetic variants in the selected lines. Whole-genome re-sequencing was here used to identify individual loci where alleles that accumulated during directional selection were purged when selection was relaxed. In total, 11 loci with significant purging signals were identified, five in the low (LW) and six in the high (HW) body weight lineages. Associations between purged haplotypes in these loci and BW56 were tested in an advanced intercross line (AIL). Two loci with purging signals and haplotype associations to BW56 are particularly interesting for further functional characterization, one locus on chromosome 6 in the LW covering the sour-taste receptor gene PKD2L1, a functional candidate gene for the decreased appetite observed in the LWS and a locus on chromosome 20 in the HW containing a skeletal muscle hypertrophy gene, DNTTIP1.


Assuntos
Peso Corporal/genética , Galinhas/genética , Aptidão Genética/genética , Seleção Genética/genética , Animais , Cruzamento , Galinhas/crescimento & desenvolvimento , Haplótipos/genética , Magreza/genética
19.
G3 (Bethesda) ; 9(4): 1165-1173, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30737239

RESUMO

Experimental populations of model organisms provide valuable opportunities to unravel the genomic impact of selection in a controlled system. The Virginia body weight chicken lines represent a unique resource to investigate signatures of selection in a system where long-term, single-trait, bidirectional selection has been carried out for more than 60 generations. At 55 generations of divergent selection, earlier analyses of pooled genome resequencing data from these lines revealed that 14.2% of the genome showed extreme differentiation between the selected lines, contained within 395 genomic regions. Here, we report more detailed analyses of these data exploring the regions displaying within- and between-line genomic signatures of the bidirectional selection applied in these lines. Despite the strict selection regime for opposite extremes in body weight, this did not result in opposite genomic signatures between the lines. The lines often displayed a duality of the sweep signatures, where an extended region of homozygosity in one line, in contrast to mosaic pattern of heterozygosity in the other line. These haplotype mosaics consisted of short, distinct haploblocks of variable between-line divergence, likely the results of a complex demographic history involving bottlenecks, introgressions and moderate inbreeding. We demonstrate this using the example of complex haplotype mosaicism in the growth1 QTL. These mosaics represent the standing genetic variation available at the onset of selection in the founder population. Selection on standing genetic variation can thus result in different signatures depending on the intensity and direction of selection.


Assuntos
Peso Corporal/genética , Galinhas/genética , Seleção Genética , Animais , Galinhas/anatomia & histologia , Galinhas/crescimento & desenvolvimento , Variação Genética , Mosaicismo , Locos de Características Quantitativas
20.
J Poult Sci ; 56(4): 245-252, 2019 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-32055221

RESUMO

Responses of an individual to food deprivation, such as a 16-h fast, are complex, and are influenced by environmental and genetic factors. Domestication is an ongoing process during which adaptations to changing environments occur over generations. Food deprivation by their caretakers is less for domestic chickens than for their junglefowl ancestors. Unlike domestic chicken, the junglefowl adapted over generations to periods of food deprivation, which may be reflected in differences in metabolic responses to brief periods without food. Here, we compared the blood glucose and plasma levels of non-esterified fatty acids (NEFA) among four populations when deprived of feed for 16 h. The four populations included a domestic White Rock experimental line (LWS) maintained for generations under ad libitum feeding, adult red junglefowl (RJF), and a reciprocal cross of the lines. Although there were significant differences in adult (31-week) body weight between the RJF (683 g) and LWS (1282 g), with the weight of F1 crosses being intermediate, the amount of abdominal fat relative to body weight was similar for all populations. Patterns for blood glucose responses to a glucose bolus after a 16-h fast were similar for the initial and final points in the parental and cross populations. However, RJF reached their peak faster than LWS, with the reciprocal cross intermediate to the parental populations. Plasma NEFA concentrations were higher after the 16-h fast than in fed states, with no population differences for the fasting state. However, in the fed state, NEFA levels were lesser for LWS than for others, which was reflected further in percentage change from fed to fasted. This larger change in LWS suggests differences in mobilization of energy substrates and implies that during domestication or development of the LWS line, thresholds for responses to acute stressors may have increased.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA