Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Nature ; 586(7830): 623-627, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32814343

RESUMO

During meiosis, crossover recombination connects homologous chromosomes to direct their accurate segregation1. Defective crossing over causes infertility, miscarriage and congenital disease. Each pair of chromosomes attains at least one crossover via the formation and biased resolution of recombination intermediates known as double Holliday junctions2,3. A central principle of crossover resolution is that the two Holliday junctions are resolved in opposite planes by targeting nuclease incisions to specific DNA strands4. The endonuclease activity of the MutLγ complex has been implicated in the resolution of crossovers5-10, but the mechanisms that activate and direct strand-specific cleavage remain unknown. Here we show that the sliding clamp PCNA is important for crossover-biased resolution. In vitro assays with human enzymes show that PCNA and its loader RFC are sufficient to activate the MutLγ endonuclease. MutLγ is further stimulated by a co-dependent activity of the pro-crossover factors EXO1 and MutSγ, the latter of which binds Holliday junctions11. MutLγ also binds various branched DNAs, including Holliday junctions, but does not show canonical resolvase activity, implying that the endonuclease incises adjacent to junction branch points to achieve resolution. In vivo, RFC facilitates MutLγ-dependent crossing over in budding yeast. Furthermore, PCNA localizes to prospective crossover sites along synapsed chromosomes. These data highlight similarities between crossover resolution and the initiation steps of DNA mismatch repair12,13 and evoke a novel model for crossover-specific resolution of double Holliday junctions during meiosis.


Assuntos
Troca Genética , Endonucleases/metabolismo , Meiose , Proteínas MutL/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , DNA Cruciforme/química , DNA Cruciforme/genética , DNA Cruciforme/metabolismo , Ativação Enzimática , Humanos , Hidrólise , Masculino , Camundongos , Proteínas MutS/metabolismo , Ligação Proteica , Proteína de Replicação C/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
2.
Blood ; 139(7): 1039-1051, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-34767620

RESUMO

Human telomere biology disorders (TBD)/short telomere syndromes (STS) are heterogeneous disorders caused by inherited loss-of-function mutations in telomere-associated genes. Here, we identify 3 germline heterozygous missense variants in the RPA1 gene in 4 unrelated probands presenting with short telomeres and varying clinical features of TBD/STS, including bone marrow failure, myelodysplastic syndrome, T- and B-cell lymphopenia, pulmonary fibrosis, or skin manifestations. All variants cluster to DNA-binding domain A of RPA1 protein. RPA1 is a single-strand DNA-binding protein required for DNA replication and repair and involved in telomere maintenance. We showed that RPA1E240K and RPA1V227A proteins exhibit increased binding to single-strand and telomeric DNA, implying a gain in DNA-binding function, whereas RPA1T270A has binding properties similar to wild-type protein. To study the mutational effect in a cellular system, CRISPR/Cas9 was used to knock-in the RPA1E240K mutation into healthy inducible pluripotent stem cells. This resulted in severe telomere shortening and impaired hematopoietic differentiation. Furthermore, in patients with RPA1E240K, we discovered somatic genetic rescue in hematopoietic cells due to an acquired truncating cis RPA1 mutation or a uniparental isodisomy 17p with loss of mutant allele, coinciding with stabilized blood counts. Using single-cell sequencing, the 2 somatic genetic rescue events were proven to be independently acquired in hematopoietic stem cells. In summary, we describe the first human disease caused by germline RPA1 variants in individuals with TBD/STS.


Assuntos
Transtornos da Insuficiência da Medula Óssea/patologia , Mutação com Ganho de Função , Heterozigoto , Síndromes Mielodisplásicas/patologia , Proteína de Replicação A/genética , Encurtamento do Telômero , Telômero/genética , Adolescente , Adulto , Transtornos da Insuficiência da Medula Óssea/etiologia , Transtornos da Insuficiência da Medula Óssea/metabolismo , Diferenciação Celular , Criança , Feminino , Humanos , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Síndromes Mielodisplásicas/etiologia , Síndromes Mielodisplásicas/metabolismo , Adulto Jovem
3.
Nucleic Acids Res ; 49(4): 2005-2026, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33476370

RESUMO

Replication Protein A (RPA) is a critical complex that acts in replication and promotes homologous recombination by allowing recombinase recruitment to processed DSB ends. Most organisms possess three RPA subunits (RPA1, RPA2, RPA3) that form a trimeric complex critical for viability. The Caenorhabditis elegans genome encodes RPA-1, RPA-2 and an RPA-2 paralog RPA-4. In our analysis, we determined that RPA-2 is critical for germline replication and normal repair of meiotic DSBs. Interestingly, RPA-1 but not RPA-2 is essential for somatic replication, in contrast to other organisms that require both subunits. Six different hetero- and homodimeric complexes containing permutations of RPA-1, RPA-2 and RPA-4 can be detected in whole animal extracts. Our in vivo studies indicate that RPA-1/4 dimer is less abundant in the nucleus and its formation is inhibited by RPA-2. While RPA-4 does not participate in replication or recombination, we find that RPA-4 inhibits RAD-51 filament formation and promotes apoptosis of a subset of damaged nuclei. Altogether these findings point to sub-functionalization and antagonistic roles of RPA complexes in C. elegans.


Assuntos
Apoptose , Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/genética , Replicação do DNA , Meiose/genética , Recombinação Genética , Proteína de Replicação A/fisiologia , Animais , Proteínas de Caenorhabditis elegans/análise , Proteínas de Caenorhabditis elegans/metabolismo , Quebras de DNA de Cadeia Dupla , Mitose/genética , Rad51 Recombinase/análise , Proteína de Replicação A/metabolismo
4.
Int J Mol Sci ; 24(12)2023 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-37373425

RESUMO

As many as 700,000 unique sequences in the human genome are predicted to fold into G-quadruplexes (G4s), non-canonical structures formed by Hoogsteen guanine-guanine pairing within G-rich nucleic acids. G4s play both physiological and pathological roles in many vital cellular processes including DNA replication, DNA repair and RNA transcription. Several reagents have been developed to visualize G4s in vitro and in cells. Recently, Zhen et al. synthesized a small protein G4P based on the G4 recognition motif from RHAU (DHX36) helicase (RHAU specific motif, RSM). G4P was reported to bind the G4 structures in cells and in vitro, and to display better selectivity toward G4s than the previously published BG4 antibody. To get insight into G4P- G4 interaction kinetics and selectivity, we purified G4P and its expanded variants, and analyzed their G4 binding using single-molecule total internal reflection fluorescence microscopy and mass photometry. We found that G4P binds to various G4s with affinities defined mostly by the association rate. Doubling the number of the RSM units in the G4P increases the protein's affinity for telomeric G4s and its ability to interact with sequences folding into multiple G4s.


Assuntos
Quadruplex G , Humanos , RNA Helicases DEAD-box/metabolismo , RNA/metabolismo , DNA Helicases/metabolismo
7.
Mol Cell ; 35(5): 694-703, 2009 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-19748362

RESUMO

An encounter between a DNA-translocating enzyme and a DNA-bound protein must occur frequently in the cell, but little is known about its outcome. Here we developed a multicolor single-molecule fluorescence approach to simultaneously monitor single-stranded DNA (ssDNA) translocation by a helicase and the fate of another protein bound to the same DNA. Distance-dependent fluorescence quenching by the iron-sulfur cluster of the archaeal XPD (Rad3) helicase was used as a calibrated proximity signal. Despite the similar equilibrium DNA-binding properties, the two cognate ssDNA-binding proteins RPA1 and RPA2 differentially affected XPD translocation. RPA1 competed with XPD for ssDNA access. In contrast, RPA2 did not interfere with XPD-ssDNA binding but markedly slowed down XPD translocation. Mechanistic models of bypassing DNA-bound proteins by the Rad3 family helicases and their biological implications are discussed.


Assuntos
Proteínas Arqueais/metabolismo , Reparo do DNA , DNA/metabolismo , Proteína de Replicação A/metabolismo , Proteína Grupo D do Xeroderma Pigmentoso/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas Arqueais/química , Sítios de Ligação , Carbocianinas , DNA/química , Corantes Fluorescentes , Cinética , Modelos Moleculares , Conformação de Ácido Nucleico , Conformação Proteica , Proteína de Replicação A/química , Processamento de Sinais Assistido por Computador , Espectrometria de Fluorescência , Proteína Grupo D do Xeroderma Pigmentoso/química
8.
Proc Natl Acad Sci U S A ; 111(3): E316-25, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-24395779

RESUMO

High fidelity homologous DNA recombination depends on mismatch repair (MMR), which antagonizes recombination between divergent sequences by rejecting heteroduplex DNA containing excessive nucleotide mismatches. The hMSH2-hMSH6 heterodimer is the first responder in postreplicative MMR and also plays a prominent role in heteroduplex rejection. Whether a similar molecular mechanism underlies its function in these two processes remains enigmatic. We have determined that hMSH2-hMSH6 efficiently recognizes mismatches within a D-loop recombination initiation intermediate. Mismatch recognition by hMSH2-hMSH6 is not abrogated by human replication protein A (HsRPA) bound to the displaced single-stranded DNA (ssDNA) or by HsRAD51. In addition, ATP-bound hMSH2-hMSH6 sliding clamps that are essential for downstream MMR processes are formed and constrained within the heteroduplex region of the D-loop. Moreover, the hMSH2-hMSH6 sliding clamps are stabilized on the D-loop by HsRPA bound to the displaced ssDNA. Our findings reveal similarities and differences in hMSH2-hMSH6 mismatch recognition and sliding-clamp formation between a D-loop recombination intermediate and linear duplex DNA.


Assuntos
Reparo de Erro de Pareamento de DNA , Proteínas de Ligação a DNA/química , DNA/química , Proteína 2 Homóloga a MutS/química , Recombinação Genética , Difosfato de Adenosina/química , Trifosfato de Adenosina/química , Pareamento Incorreto de Bases , Biotinilação , Humanos , Hidrólise , Cinética , Ligação Proteica , Estrutura Terciária de Proteína , Rad51 Recombinase/química , Proteína de Replicação A/química
9.
EMBO J ; 30(16): 3368-82, 2011 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-21804533

RESUMO

RAD52 protein has an important role in homology-directed DNA repair by mediating RAD51 nucleoprotein filament formation on single-stranded DNA (ssDNA) protected by replication protein-A (RPA) and annealing of RPA-coated ssDNA. In human, cellular response to DNA damage includes phosphorylation of RAD52 by c-ABL kinase at tyrosine 104. To address how this phosphorylation modulates RAD52 function, we used an amber suppressor technology to substitute tyrosine 104 with chemically stable phosphotyrosine analogue (p-Carboxymethyl-L-phenylalanine, pCMF). The RAD52(Y104pCMF) retained ssDNA-binding activity characteristic of unmodified RAD52 but showed lower affinity for double-stranded DNA (dsDNA) binding. Single-molecule analyses revealed that RAD52(Y104pCMF) specifically targets and wraps ssDNA. While RAD52(Y104pCMF) is confined to ssDNA region, unmodified RAD52 readily diffuses into dsDNA region. The Y104pCMF substitution also increased the ssDNA annealing rate and allowed overcoming the inhibitory effect of dsDNA. We propose that phosphorylation at Y104 enhances ssDNA annealing activity of RAD52 by attenuating dsDNA binding. Implications of phosphorylation-mediated activation of RAD52 annealing activity are discussed.


Assuntos
DNA de Cadeia Simples/metabolismo , Fosfotirosina/metabolismo , Processamento de Proteína Pós-Traducional , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Aminoácidos/metabolismo , Ligação Competitiva , DNA/metabolismo , DNA/farmacologia , Quebras de DNA de Cadeia Dupla , Genes Supressores , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Fenilalanina/análogos & derivados , Fenilalanina/metabolismo , Fosforilação , Ligação Proteica , Conformação Proteica , Proteínas Proto-Oncogênicas c-abl/metabolismo , Proteína Rad52 de Recombinação e Reparo de DNA/química , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
10.
Nucleic Acids Res ; 41(13): 6687-97, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23661680

RESUMO

Effective drug discovery and optimization can be accelerated by techniques capable of deconvoluting the complexities often present in targeted biological systems. We report a single-molecule approach to study the binding of an alternative splicing regulator, muscleblind-like 1 protein (MBNL1), to (CUG)n = 4,6 and the effect of small molecules on this interaction. Expanded CUG repeats (CUG(exp)) are the causative agent of myotonic dystrophy type 1 by sequestering MBNL1. MBNL1 is able to bind to the (CUG)n-inhibitor complex, indicating that the inhibition is not a straightforward competitive process. A simple ligand, highly selective for CUG(exp), was used to design a new dimeric ligand that binds to (CUG)n almost 50-fold more tightly and is more effective in destabilizing MBNL1-(CUG)4. The single-molecule method and the analysis framework might be extended to the study of other biomolecular interactions.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Proteínas de Ligação a RNA/metabolismo , Repetições de Trinucleotídeos , Ligantes , Microscopia de Fluorescência/métodos , RNA/química , RNA/efeitos dos fármacos , RNA/metabolismo , Bibliotecas de Moléculas Pequenas
11.
bioRxiv ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37214874

RESUMO

Human replication protein A (RPA) is a heterotrimeric ssDNA binding protein responsible for many aspects of cellular DNA metabolism. Dynamic interactions of the four RPA DNA binding domains (DBDs) with DNA control replacement of RPA by downstream proteins in various cellular metabolic pathways. RPA plays several important functions at telomeres where it binds to and melts telomeric G-quadruplexes, non-canonical DNA structures formed at the G-rich telomeric ssDNA overhangs. Here, we combine single-molecule total internal reflection fluorescence microscopy (smTIRFM) and mass photometry (MP) with biophysical and biochemical analyses to demonstrate that heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1) specifically remodels RPA bound to telomeric ssDNA by dampening the RPA configurational dynamics and forming a ternary complex. Uniquely, among hnRNPA1 target RNAs, telomeric repeat-containing RNA (TERRA) is selectively capable of releasing hnRNPA1 from the RPA-telomeric DNA complex. We speculate that this telomere specific RPA-DNA-hnRNPA1 complex is an important structure in telomere protection. One Sentence Summary: At the single-stranded ends of human telomeres, the heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1) binds to and modulates conformational dynamics of the ssDNA binding protein RPA forming a ternary complex which is controlled by telomeric repeat-containing RNA (TERRA).

12.
bioRxiv ; 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37214990

RESUMO

As many as 700,000 unique sequences in the human genome are predicted to fold into G-quadruplexes (G4s), non-canonical structures formed by Hoogsteen guanine-guanine pairing within G-rich nucleic acids. G4s play both physiological and pathological roles in many vital cellular processes including DNA replication, DNA repair and RNA transcription. Several reagents have been developed to visualize G4s in vitro and in cells. Recently, Zhen et al . synthesized a small protein G4P based on the G4 recognition motif from RHAU (DHX36) helicase (RHAU specific motif, RSM). G4P was reported to bind the G4 structures in cells and in vitro , and to display better selectivity towards G4s than the previously published BG4 antibody. To get insight into the G4P-G4 interaction kinetics and selectivity, we purified G4P and its expanded variants, and analyzed their G4 binding using single-molecule total internal reflection fluorescence microscopy and mass photometry. We found that G4P binds to various G4s with affinities defined mostly by the association rate. Doubling the number of the RSM units in the G4P increases the protein's affinity for telomeric G4s and its ability to interact with sequences folding into multiple G4s.

13.
J Mol Biol ; 435(4): 167946, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36623584

RESUMO

DNA damage bypass pathways promote the replication of damaged DNA when replication forks stall at sites of DNA damage. Template switching is a DNA damage bypass pathway in which fork-reversal helicases convert stalled replication forks into four-way DNA junctions called chicken foot intermediates, which are subsequently extended by replicative DNA polymerases. In yeast, fork-reversal is carried out by the Rad5 helicase using an unknown mechanism. To better understand the mechanism of Rad5 and its specificity for different fork DNA substrates, we used a FRET-based assay to observe fork reversal in real time. We examined the ability of Rad5 to bind and catalyze the reversal of various fork DNA substrates in the presence of short gaps in the leading or lagging strand as well as in the presence or absence of RPA and RNA primers in the lagging strand. We found that Rad5 preferentially reverses fork DNA substrates with short gaps (10 to 30 nt.) in the leading strand. Thus, Rad5 preferentially reverses fork DNA substrates that form chicken foot intermediates with 5' overhangs that can be extended by replicative DNA polymerases during the subsequent steps of template switching.


Assuntos
Dano ao DNA , DNA Helicases , Replicação do DNA , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , DNA Helicases/genética , DNA Helicases/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
14.
bioRxiv ; 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37745359

RESUMO

The mismatch repair (MMR) pathway is known as a tumor suppressive pathway and genes involved in MMR are commonly mutated in hereditary colorectal or other cancer types. However, the function of MMR genes/proteins in breast cancer progression and metastasis are largely unknown. We found that MSH2, but not MLH1, is highly enriched in basal-like breast cancer (BLBC) and that its protein expression is inversely correlated with overall survival time (OS). MSH2 expression is frequently elevated due to genomic amplification or gain-of-expression in BLBC, which results in increased MSH2 protein to pair with MSH6 (collectively referred to as MutSα). Genetic deletion of MSH2 or MLH1 results in a contrasting phenotype in metastasis, with MSH2-deletion leading to reduced metastasis and MLH1-deletion to enhanced liver or lung metastasis. Mechanistically, MSH2-deletion induces the expression of a panel of chemokines in BLBC via epigenetic and/or transcriptional regulation, which leads to an immune reactive tumor microenvironment (TME) and elevated immune cell infiltrations. MLH1 is not correlated with chemokine expression and/or immune cell infiltration in BLBC, but its deletion results in strong accumulation of neutrophils that are known for metastasis promotion. Our study supports the differential functions of MSH2 and MLH1 in BLBC progression and metastasis, which challenges the paradigm of the MMR pathway as a universal tumor suppressive mechanism.

15.
bioRxiv ; 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38014173

RESUMO

Human RAD52 1,2 is a multifunctional DNA repair protein involved in several cellular events that support genome stability including protection of stalled DNA replication forks from excessive degradation 3-7 . In its gatekeeper role, RAD52 binds to and stabilizes stalled replication forks during replication stress protecting them from reversal by SMARCAL1 5 . The structural and molecular mechanism of the RAD52-mediated fork protection remains elusive. Here, using P1 nuclease sensitivity, biochemical and single-molecule analyses we show that RAD52 dynamically remodels replication forks through its strand exchange activity. The presence of the ssDNA binding protein RPA at the fork modulates the kinetics of the strand exchange without impeding the reaction outcome. Mass photometry and single-particle cryo-electron microscopy show that the replication fork promotes a unique nucleoprotein structure containing head-to-head arrangement of two undecameric RAD52 rings with an extended positively charged surface that accommodates all three arms of the replication fork. We propose that the formation and continuity of this surface is important for the strand exchange reaction and for competition with SMARCAL1.

16.
NAR Cancer ; 5(2): zcad018, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37139244

RESUMO

RAD52 protein is a coveted target for anticancer drug discovery. Similar to poly-ADP-ribose polymerase (PARP) inhibitors, pharmacological inhibition of RAD52 is synthetically lethal with defects in genome caretakers BRCA1 and BRCA2 (∼25% of breast and ovarian cancers). Emerging structure activity relationships for RAD52 are complex, making it challenging to transform previously identified disruptors of the RAD52-ssDNA interaction into drug-like leads using traditional medicinal chemistry approaches. Using pharmacophoric informatics on the RAD52 complexation by epigallocatechin (EGC), and the Enamine in silico REAL database, we identified six distinct chemical scaffolds that occupy the same physical space on RAD52 as EGC. All six were RAD52 inhibitors (IC50 ∼23-1200 µM) with two of the compounds (Z56 and Z99) selectively killing BRCA-mutant cells and inhibiting cellular activities of RAD52 at micromolar inhibitor concentrations. While Z56 had no effect on the ssDNA-binding protein RPA and was toxic to BRCA-mutant cells only, Z99 inhibited both proteins and displayed toxicity towards BRCA-complemented cells. Optimization of the Z99 scaffold resulted in a set of more powerful and selective inhibitors (IC50 ∼1.3-8 µM), which were only toxic to BRCA-mutant cells. RAD52 complexation by Z56, Z99 and its more specific derivatives provide a roadmap for next generation of cancer therapeutics.

17.
Nucleic Acids Res ; 38(9): 2917-30, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20081207

RESUMO

Rad52 promotes the annealing of complementary strands of DNA bound by replication protein A (RPA) during discrete repair pathways. Here, we used a fluorescence resonance energy transfer (FRET) between two fluorescent dyes incorporated into DNA substrates to probe the mechanism by which human Rad52 (hRad52) interacts with and mediates annealing of ssDNA-hRPA complexes. Human Rad52 bound ssDNA or ssDNA-hRPA complex in two, concentration-dependent modes. At low hRad52 concentrations, ssDNA was wrapped around the circumference of the protein ring, while at higher protein concentrations, ssDNA was stretched between multiple hRad52 rings. Annealing by hRad52 occurred most efficiently when each complementary DNA strand or each ssDNA-hRPA complex was bound by hRad52 in a wrapped configuration, suggesting homology search and annealing occur via two hRad52-ssDNA complexes. In contrast to the wild type protein, hRad52(RQK/AAA) and hRad52(1-212) mutants with impaired ability to bind hRPA protein competed with hRPA for binding to ssDNA and failed to counteract hRPA-mediated duplex destabilization highlighting the importance of hRad52-hRPA interactions in promoting efficient DNA annealing.


Assuntos
DNA de Cadeia Simples/metabolismo , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Ligação Competitiva , Transferência Ressonante de Energia de Fluorescência , Humanos , Mutação , Ligação Proteica , Proteína Rad52 de Recombinação e Reparo de DNA/química , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Proteína de Replicação A/metabolismo
18.
Methods ; 51(3): 313-21, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20167274

RESUMO

Many quantitative approaches for analysis of helicase-nucleic acid interactions require a robust and specific signal, which reports on the presence of the helicase and its position on a nucleic acid lattice. Since 2006, iron-sulfur (FeS) clusters have been found in a number of helicases. They serve as endogenous quenchers of Cy3 and Cy5 fluorescence which can be exploited to characterize FeS cluster containing helicases both in ensemble-based assays and at the single-molecule level. Synthetic oligonucleotides site-specifically labeled with either Cy3 or Cy5 can be used to create a variety of DNA substrates that can be used to characterized DNA binding, as well as helicase translocation and unwinding. Equilibrium binding affinities for ssDNA, duplex and branched DNA substrates can be determined using bulk assays. Identification of preferred cognate substrates, and the orientation and position of the helicase when bound to DNA can also be determined by taking advantage of the intrinsic quencher in the helicase. At the single-molecule level, real-time observation of the helicase translocating along DNA either towards the dye or away from the dye can be used to determine the rate of translocation by the helicase on ssDNA and its orientation when bound to DNA. The use of duplex substrates can reveal the rate of unwinding and processivity of the helicase. Finally, the FeS cluster can be used to visualize protein-protein interactions, and to examine the interplay between helicases and other DNA binding proteins on the same DNA substrate.


Assuntos
DNA Helicases/química , DNA/química , DNA/metabolismo , Proteínas Ferro-Enxofre/química , Cristalografia por Raios X , Transferência Ressonante de Energia de Fluorescência/métodos , Modelos Moleculares
19.
Elife ; 102021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33739282

RESUMO

Helicases utilize nucleotide triphosphate (NTP) hydrolysis to translocate along single-stranded nucleic acids (NA) and unwind the duplex. In the cell, helicases function in the context of other NA-associated proteins such as single-stranded DNA binding proteins. Such encounters regulate helicase function, although the underlying mechanisms remain largely unknown. Ferroplasma acidarmanus xeroderma pigmentosum group D (XPD) helicase serves as a model for understanding the molecular mechanisms of superfamily 2B helicases, and its activity is enhanced by the cognate single-stranded DNA binding protein replication protein A 2 (RPA2). Here, optical trap measurements of the unwinding activity of a single XPD helicase in the presence of RPA2 reveal a mechanism in which XPD interconverts between two states with different processivities and transient RPA2 interactions stabilize the more processive state, activating a latent 'processivity switch' in XPD. A point mutation at a regulatory DNA binding site on XPD similarly activates this switch. These findings provide new insights on mechanisms of helicase regulation by accessory proteins.


Assuntos
Proteínas de Bactérias/metabolismo , Proteína de Replicação A/metabolismo , Thermoplasmales/enzimologia , Proteína Grupo D do Xeroderma Pigmentoso/metabolismo , Sítios de Ligação , Pinças Ópticas
20.
Nucleic Acids Res ; 36(15): 5013-20, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18658243

RESUMO

In the RecFOR pathway, the RecF and RecR proteins form a complex that binds to DNA and exerts multiple functions, including directing the loading of RecA onto single-stranded (ss) DNA regions near double-stranded (ds) DNA-ssDNA junctions and preventing it from forming a filament beyond the ssDNA region. However, neither the structure of the RecFR complex nor its DNA-binding mechanism was previously identified. Here, size-exclusion chromatography and small-angle X-ray scattering data indicate that Thermus thermophilus (tt) RecR binds to ttRecF to form a globular structure consisting of four ttRecR and two ttRecF monomers. In addition, a low resolution model shows a cavity in the central part of the complex, suggesting that ttRecR forms a ring-like tetramer inside the ttRecFR complex. Mutant ttRecR proteins lacking the N- or C-terminal interfaces that are required for tetramer formation are unable to form a complex with ttRecF. Furthermore, a ttRecFR complex containing the DNA-binding deficient ttRecR K23E/R27E double mutant, which contains mutations lying inside the ring, exhibits significantly reduced dsDNA binding. Thus, we propose that the ring-like ttRecR tetramer has a key role in tethering the ttRecFR complex onto dsDNA and that the ring structure may function as a clamp protein.


Assuntos
Proteínas de Bactérias/química , Proteínas de Ligação a DNA/química , DNA/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica , Espalhamento a Baixo Ângulo , Thermus thermophilus , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA