Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Technol ; 32(7-8): 817-24, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21879556

RESUMO

The recovery of metals from waste effluents is necessary for pollution prevention and sustainable practice. High gradient magnetic separation (HGMS) is seen as a viable method. We investigated the capture of valence copper from aqueous copper ion by HGMS in combination with a chemical reduction process. When a copper solution (3.9 or 15.6 mM) was exposed to excess of dithionite (mole ratio of 1:3) in the presence of ammonia (mole ratio of 4) and amended with MnCl2 (2.5 g/L) and the mixture passed through a flow reactor under a strong magnetic field (10000 Gauss), valence copper was obtained and captured in the reactor with well over 95% yields. The chemical reduction reactions were unaffected by the presence of MnCl2 while the amount of MnCl2 (0, 20 and 32 mM) has significantly varied the copper recovery efficiency, especially in the case of high initial copper ion concentration (15.6 mM). Formation of MnO2 flocs was found to have a detrimental effect on copper removal efficiency. The HGMS method offers a tool of resource recovery for copper from waste effluents.


Assuntos
Cobre/isolamento & purificação , Cobre/efeitos da radiação , Magnetismo/instrumentação , Eliminação de Resíduos/instrumentação , Cobre/química , Campos Eletromagnéticos , Desenho de Equipamento , Análise de Falha de Equipamento , Integração de Sistemas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA