Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(5)2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33668114

RESUMO

Planar-type resistance temperature detectors (P-RTDs) were fabricated via fused deposition modeling by dual nozzle extrusion. The temperature-sensing element of the fabricated sensor was printed with electrically conductive polylactic acid/carbon black (PLA/CB) composite, while the structural support was printed with a PLA insulator. The temperature-dependent resistivity change of PLA/CB was evaluated for different stacking sequences of PLA/CB layers printed with [0°/0°], [-45°/45°], and [0°/90°] plies. Compared to a PLA/CB filament used as 3D printing source material, the laminated structures exhibited a response over 3 times higher, showing a resistivity change from -10 to 40 Ω∙cm between -15 and 50 °C. Then, using the [0°/90°] plies stacking sequence, a P-RTD thermometer was fabricated in conjunction with a Wheatstone bridge circuit for temperature readouts. The P-RTD yielded a temperature coefficient of resistance of 6.62 %/°C with high stability over repeated cycles. Fabrication scalability was demonstrated by realizing a 3 × 3 array of P-RTDs, allowing the temperature profile detection of the surface in contact with heat sources.

2.
J Nanosci Nanotechnol ; 15(10): 8048-54, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26726461

RESUMO

The mechanical, thermal, optical, electrical and morphological properties of cellulose, an excellent natural biomaterial, can be improved by organic-inorganic hybrid composite methods. Based on the pristine properties of cellulose, the preparation of cellulose-metal oxide hybrid nanocomposites using a dispersion process of nanoparticles into the cellulose host matrix by traditional methods, has limitations. Recently, the functionalized cellulose-polymer-based materials were considered to be an important class of high-performance materials, providing the synthesis of various functional hybrid nanocomposites using a sol-gel method. Transparent cellulose-POSS-amine-silica/titania hybrids were prepared by an in-situ sol-gel process in the presence of γ-aminopropyltrimethoxylsilane (γ-APTES). The methodology involves the formation of covalent bonding between the cellulose-POSS amine and SiO2/TiO2 hybrid nanocomposite material. An analysis of the synthesized hybrid material by Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, differential thermal calorimetry, scanning electron microscopy, and transmission electron microscopy indicated that the silica/titania nanoparticles were bonded covalently and dispersed uniformly into the cellulose-POSS amine matrix. In addition, biological properties of the cellulose-POSS-silica/titania hybrid material were examined using an antimicrobial test against pathogenic bacteria, such as Bacillus cereus (F481072) and E. coli (ATCC35150) for the bacterial effect.


Assuntos
Antibacterianos , Celulose , Nanocompostos/química , Compostos de Organossilício , Dióxido de Silício , Titânio , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Bacillus cereus/crescimento & desenvolvimento , Celulose/química , Celulose/farmacologia , Escherichia coli/crescimento & desenvolvimento , Compostos de Organossilício/química , Compostos de Organossilício/farmacologia , Dióxido de Silício/química , Dióxido de Silício/farmacologia , Titânio/química , Titânio/farmacologia
3.
Sci Rep ; 9(1): 12622, 2019 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-31477759

RESUMO

The porous materials of SnO2@NGO composite was synthesized by thermal reduction process at 550 °C in presence ammonia and urea as catalyst. In this process, the higher electrostatic attraction between the SnO2@NGO nanoparticles were anchored via thermal reduction reaction. These synthesized SnO2@ NGO composites were confirmed by Raman, XRD, XPS, HR-TEM, and EDX results. The SnO2 nanoparticles were anchored in the NGO composite in the controlled nanometer scale proved by FE-TEM and BET analysis. The SnO2@NGO composite was used to study the electrochemical properties of CV, GCD, and EIS analysis for supercapacitor application. The electrochemical properties of SnO2@NGO exhibited the specific capacitance (~378 F/g at a current density of 4 A/g) and increasing the cycle stability up to 5000 cycles. Therefore, the electrochemical results of SnO2@NGO composite could be promising for high-performance supercapacitor applications.

4.
Nanoscale Res Lett ; 12(1): 381, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28582962

RESUMO

It is demonstrated in this paper that silica nanoparticles coated with core/shell gold provide efficient thermal, optical, and morphological properties with respect to the cellulose-polyhedral oligomeric silsesquioxanes (POSS) hybrid system. The one-step synthesis of a silica/gold nanocomposite is achieved with a simultaneous hydrolysis and reduction of gold chloride in the presence of formic acid, and the trimethoxysilane group acts as a silica precursor. The focus here comprises the synthesis of cellulose-POSS and silica/gold hybrid nanocomposites using the following two methods: (1) an in situ sol-gel process and (2) a polyvinyl alcohol/tetrakis (hydroxymethyl)phosphonium chloride process. Accordingly, the silica/gold core/shell nanoparticles are synthesized. The growth and attachment of the gold nanoparticles onto the functionalized surface of the silica at the nanometer scale is achieved via both the sol-gel and the tetrakis (hydroxymethyl) phosphonium chloride processes. The cellulose-POSS-silica/gold nanocomposites are characterized according to Fourier transformed infrared spectroscopy, Raman, X-ray diffraction, UV, photoluminescence, SEM, energy-dispersive X-ray spectroscopy, TEM, thermogravimetric, and Brunauer-Emmett-Teller analyses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA