Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biomater Adv ; 151: 213491, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37295195

RESUMO

Soft-tissue sealing at transmucosal sites is very important for preventing the invasion of pathogens and maintaining the long-term stability and function of dental implants. However, the colonization of oral pathogens on the implant surface and surrounding soft tissues can disturb the early establishment of soft-tissue sealing and even induce peri-implant infection. The purpose of this study was to construct two antibacterial coatings with 5 or 10 sodium alginate/chlorhexidine bilayers on titanium surfaces using layer-by-layer self-assembly technology to promote soft-tissue sealing. The corresponding chemical composition, surface topography, wettability and release behaviour were investigated to prove that the resultant coating of sodium alginate and chlorhexidine was coated on the porous titanium surface. In-vitro and in-vivo antibacterial results showed that both prepared coatings inhibited or killed the bacteria on their surfaces and the surrounding areas to prevent plaque biofilm formation, especially the coating with 10 bilayers. Although both coatings inhibited the initial adhesion of fibroblasts, the cytocompatibility gradually improved with coating degradation. More importantly, both coatings achieved cell adhesion and proliferation in an in-vitro bacterial environment and effectively alleviated bacteria-induced subcutaneous inflammation in-vivo. Therefore, this study demonstrated that the multilayered coating could prevent implant-related infections in the initial stage of implant surgery and then improve soft-tissue integration with implant devices.


Assuntos
Anti-Infecciosos , Implantes Dentários , Clorexidina/farmacologia , Titânio/farmacologia , Alginatos/farmacologia , Antibacterianos/farmacologia
2.
Regen Biomater ; 10: rbac082, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36683759

RESUMO

Silver has been widely used for surface modification to prevent implant-associated infections. However, the inherent cytotoxicity of silver greatly limited the scope of its clinical applications. The construction of surfaces with both good antibacterial properties and favorable cytocompatibility still remains a challenge. In this study, a structurally homogeneous dopamine-silver (DA/Ag) nanocomposite was fabricated on the implant surface to balance the antibacterial activity and cytocompatibility of the implant. The results show that the DA/Ag nanocomposites prepared under the acidic conditions (pH = 4) on the titanium surface are homogeneous with higher Ag+ content, while an obvious core (AgNPs)-shell (PDA) structure is formed under neutral (pH = 7) and alkaline conditions (pH = 10), and the subsequent heat treatment enhanced the stability of PDA-AgNPs nanocomposite coatings on porous titanium. The antibacterial test, cytotoxicity test, hypodermic implantation and osteogenesis test revealed that the homogeneous PDA-AgNPs nanocomposite coating achieved the balance between the antibacterial ability and cytocompatibility, and had the best outcomes for soft tissue healing and bone formation around the implants. This study provides a facile strategy for preparing silver-loaded surfaces with both good antibacterial effect and favorable cytocompatibility, which is expected to further improve the therapeutic efficacy of silver composite-coated dental implants.

3.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 36(3): 335-342, 2022 Mar 15.
Artigo em Zh | MEDLINE | ID: mdl-35293176

RESUMO

Objective: To investigate the physicochemical properties of pure titanium surface grafted with chlorhexidine (CHX) by phenolamine coating, and to evaluate its antibacterial activity and osteoblast-compatibility in vitro. Methods: Control group was obtained by alkali and thermal treatment, and then immersed in the mixture of epigallocatechin-3-gallate/hexamethylene diamine (coating group). Phenolamine coating was deposited on the surface, and then it was immersed in CHX solution to obtain the grafted surface of CHX (grafting group). The surface morphology was observed by scanning electron microscope, the surface element composition was analyzed by X-ray photoelectron spectroscopy, and the surface hydrophilicity was measured by water contact angle test. Live/dead bacterial staining, nephelometery, and inhibition zone method were executed to evaluate the antibacterial property. Cytotoxicity was evaluated by MTT assay and cell fluorescence staining. Bacteria-MC3T3-E1 cells co-culture was conducted to evaluate the cell viability on the samples under the circumstance with bacteria. Results: Scanning electron microscope observation results showed that deposits of coating group and grafting group increased successively and gradually covered the porous structure. X-ray photoelectron spectroscopy results showed the peak of N1s enhanced and the peak of Cl2p appeared in grafting group. Water contact angle test results showed that the hydrophilic angle of three groups increased in turn, and there was significant difference between groups ( P<0.05). Live/dead bacteria staining results showed that the grafting group had the least amount of bacteria adhered to the surface and the proportion of dead bacteria was high. The grafting group had a transparent inhibition zone around it and the absorbance ( A) value did not increase, showing significant difference when compared with control group and coating group ( P<0.05). MTT assay and cell fluorescence staining results showed that the number of adherent cells on the surface of the grafting group was the least, but the adherent cells had good proliferation activity. Bacteria-cell co-culture results showed that there was no bacteria on the surface of grafting group but live cells adhered well. Conclusion: CHX-grafted phenolamine coating has the ability to inhibit bacterial adhesion and proliferation, and effectively protect cell adhesion and proliferation in a bacterial environment.


Assuntos
Clorexidina , Titânio , Antibacterianos/farmacologia , Aderência Bacteriana , Clorexidina/farmacologia , Propriedades de Superfície , Titânio/química , Titânio/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA