Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Immunol ; 199(4): 1308-1318, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28701507

RESUMO

Early-life respiratory viral infection is a risk factor for asthma development. Rhinovirus (RV) infection of 6-d-old mice, but not mature mice, causes mucous metaplasia and airway hyperresponsiveness that are associated with the expansion of lung type 2 innate lymphoid cells (ILC2s) and are dependent on IL-13 and the innate cytokine IL-25. However, contributions of the other innate cytokines, IL-33 and thymic stromal lymphopoietin (TSLP), to the observed asthma-like phenotype have not been examined. We reasoned that IL-33 and TSLP expression are also induced by RV infection in immature mice and are required for maximum ILC2 expansion and mucous metaplasia. We inoculated 6-d-old BALB/c (wild-type) and TSLP receptor-knockout mice with sham HeLa cell lysate or RV. Selected mice were treated with neutralizing Abs to IL-33 or recombinant IL-33, IL-25, or TSLP. ILC2s were isolated from RV-infected immature mice and treated with innate cytokines ex vivo. RV infection of 6-d-old mice increased IL-33 and TSLP protein abundance. TSLP expression was localized to the airway epithelium, whereas IL-33 was expressed in epithelial and subepithelial cells. RV-induced mucous metaplasia, ILC2 expansion, airway hyperresponsiveness, and epithelial cell IL-25 expression were attenuated by anti-IL-33 treatment and in TSLP receptor-knockout mice. Administration of intranasal IL-33 and TSLP was sufficient for mucous metaplasia. Finally, TSLP was required for maximal ILC2 gene expression in response to IL-25 and IL-33. The generation of mucous metaplasia in immature RV-infected mice involves a complex interplay among the innate cytokines IL-25, IL-33, and TSLP.


Assuntos
Citocinas/imunologia , Interleucina-33/imunologia , Interleucinas/imunologia , Ativação Linfocitária , Linfócitos/fisiologia , Metaplasia/imunologia , Infecções por Picornaviridae/imunologia , Rhinovirus/imunologia , Fatores Etários , Animais , Asma/imunologia , Asma/virologia , Citocinas/genética , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Imunoglobulinas/genética , Imunoglobulinas/imunologia , Imunoglobulinas/metabolismo , Interleucina-33/genética , Interleucinas/genética , Linfócitos/imunologia , Metaplasia/patologia , Metaplasia/virologia , Camundongos , Camundongos Knockout , Mucosa/imunologia , Mucosa/patologia , Infecções por Picornaviridae/virologia , Receptores de Citocinas/genética , Receptores de Citocinas/imunologia , Receptores de Citocinas/metabolismo , Hipersensibilidade Respiratória/imunologia , Hipersensibilidade Respiratória/metabolismo , Hipersensibilidade Respiratória/virologia , Linfopoietina do Estroma do Timo
2.
J Immunol ; 196(11): 4692-705, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27183577

RESUMO

Infants with a history of prematurity and bronchopulmonary dysplasia have a high risk of asthma and viral-induced exacerbations later in life. We hypothesized that hyperoxic exposure, a predisposing factor to bronchopulmonary dysplasia, modulates the innate immune response, producing an exaggerated proinflammatory reaction to viral infection. Two- to 3-d-old C57BL/6J mice were exposed to air or 75% oxygen for 14 d. Mice were infected intranasally with rhinovirus (RV) immediately after O2 exposure. Lung mRNA and protein expression, histology, dendritic cells (DCs), and airway responsiveness were assessed 1-12 d postinfection. Tracheal aspirates from premature human infants were collected for mRNA detection. Hyperoxia increased lung IL-12 expression, which persisted up to 12 d postexposure. Hyperoxia-exposed RV-infected mice showed further increases in IL-12 and increased expression of IFN-γ, TNF-α, CCL2, CCL3, and CCL4, as well as increased airway inflammation and responsiveness. In RV-infected, air-exposed mice, the response was not significant. Induced IL-12 expression in hyperoxia-exposed, RV-infected mice was associated with increased IL-12-producing CD103(+) lung DCs. Hyperoxia also increased expression of Clec9a, a CD103(+) DC-specific damaged cell-recognition molecule. Hyperoxia increased levels of ATP metabolites and expression of adenosine receptor A1, further evidence of cell damage and related signaling. In human preterm infants, tracheal aspirate Clec9a expression positively correlated with the level of prematurity. Hyperoxic exposure increases the activation of CD103(+), Clec9a(+) DCs, leading to increased inflammation and airway hyperresponsiveness upon RV infection. In premature infants, danger signal-induced DC activation may promote proinflammatory airway responses, thereby increasing respiratory morbidity.


Assuntos
Hiperóxia/imunologia , Infecções Respiratórias/imunologia , Rhinovirus/imunologia , Transdução de Sinais/imunologia , Animais , Animais Recém-Nascidos , Células Dendríticas/imunologia , Células Dendríticas/patologia , Modelos Animais de Doenças , Humanos , Inflamação/imunologia , Interleucina-12/biossíntese , Interleucina-12/imunologia , Pulmão/imunologia , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL
3.
J Immunol ; 188(6): 2894-904, 2012 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-22331068

RESUMO

Recent studies link early rhinovirus (RV) infections to later asthma development. We hypothesized that neonatal RV infection leads to an IL-13-driven asthma-like phenotype in mice. BALB/c mice were inoculated with RV1B or sham on day 7 of life. Viral RNA persisted in the neonatal lung up to 7 d postinfection. Within this time frame, IFN-α, -ß, and -γ peaked 1 d postinfection, whereas IFN-λ levels persisted. Next, we examined mice on day 35 of life, 28 d after initial infection. Compared with sham-treated controls, virus-inoculated mice demonstrated airways hyperresponsiveness. Lungs from RV-infected mice showed increases in several immune cell populations, as well as the percentages of CD4-positive T cells expressing IFN-γ and of NKp46/CD335(+), TCR-ß(+) cells expressing IL-13. Periodic acid-Schiff and immunohistochemical staining revealed mucous cell metaplasia and muc5AC expression in RV1B- but not sham-inoculated lungs. Mucous metaplasia was accompanied by induction of gob-5, MUC5AC, MUC5B, and IL-13 mRNA. By comparison, adult mice infected with RV1B showed no change in IL-13 expression, mucus production, or airways responsiveness 28 d postinfection. Intraperitoneal administration of anti-IL-13 neutralizing Ab attenuated RV-induced mucous metaplasia and methacholine responses, and IL-4R null mice failed to show RV-induced mucous metaplasia. Finally, neonatal RV increased the inflammatory response to subsequent allergic sensitization and challenge. We conclude that neonatal RV1B infection leads to persistent airways inflammation, mucous metaplasia, and hyperresponsiveness, which are mediated, at least in part, by IL-13.


Assuntos
Infecções por Picornaviridae/complicações , Infecções por Picornaviridae/patologia , Hipersensibilidade Respiratória/virologia , Mucosa Respiratória/patologia , Animais , Animais Recém-Nascidos , Separação Celular , Citocinas/biossíntese , Citocinas/imunologia , Citometria de Fluxo , Imuno-Histoquímica , Inflamação/imunologia , Inflamação/patologia , Inflamação/virologia , Metaplasia , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Picornaviridae/imunologia , Reação em Cadeia da Polimerase em Tempo Real , Hipersensibilidade Respiratória/imunologia , Hipersensibilidade Respiratória/patologia , Mucosa Respiratória/imunologia
4.
Phys Rev A ; 47(2): 1197-1208, 1993 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-9909044
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA