Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Gen Comp Endocrinol ; 347: 114423, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38086427

RESUMO

17ß-hydroxysteroid dehydrogenases (Hsd17bs) play a critical role in sex steroid biosynthesis. Although multiple types of Hsd17b have been found in fish, there is limited research on their expression and function. Recently, we succeeded in identifying eight types of Hsd17b (types 3, 4, 7, 8, 10, 12a, 12b, and 14) by RNA sequencing in the Japanese sardine Sardinops melanostictus, a commercially important clupeoid fish; however, a homologous sequence of Hsd17b1, which catalyzes the key reaction of estradiol-17ß (E2) synthesis, was absent. Here, we aimed to identify the Hsd17b type that plays a major role in E2 synthesis during ovarian development in Japanese sardine. The cDNAs encoding those eight types of Hsd17b were cloned and sequenced. The expressions of hsd17b3, hsd17b12a, and hsd17b12b were higher in ovary than in testis. In particular, hsd17b12a was predominantly expressed in the ovary. Expression of hsd17b3, hsd17b4, hsd17b12a, and hsd17b12b in the ovary increased during ovarian development. The enzymatic activities of Hsd17b3, Hsd17b12a, and Hsd17b12b were evaluated by expressing their recombinants in human embryonic kidney 293T cells. Hsd17b12a and Hsd17b12b catalyzed the conversion of androstenedione (AD) to testosterone (T) and estrone (E1) to E2. The results of in vitro bioassays using sardine ovaries indicated that E2 is synthesized from pregnenolone via AD and T, but not E1. These results suggest that Hsd17b12a plays a major role in E2 synthesis in sardine ovary by catalyzing the conversion of AD to T.


Assuntos
Estradiol , Ovário , Masculino , Feminino , Animais , Humanos , Ovário/metabolismo , Estradiol/metabolismo , Testículo/metabolismo , Testosterona/metabolismo , 17-Hidroxiesteroide Desidrogenases/genética , 17-Hidroxiesteroide Desidrogenases/metabolismo , Androstenodiona/metabolismo , Peixes/genética , Peixes/metabolismo
2.
Zoolog Sci ; 38(2): 140-147, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33812353

RESUMO

Symbiotic associations with beneficial microorganisms endow a variety of host animals with adaptability to the environment. Stable transmission of symbionts across host generations is a key event in the maintenance of symbiotic associations through evolutionary time. However, our understanding of the mechanisms of symbiont transmission remains fragmentary. The deep-sea clam Phreagena okutanii harbors chemoautotrophic intracellular symbiotic bacteria in gill epithelial cells, and depends on these symbionts for nutrition. In this study, we focused on the association of these maternally transmitted symbionts with ovarian germ cells in juvenile female clams. First, we established a sex identification method for small P. okutanii individuals, and morphologically classified female germ cells observed in the ovary. Then, we investigated the association of the endosymbiotic bacteria with germ cells. We found that the symbionts were localized on the outer surface of the cell membrane of primary oocytes and not within the cluster of oogonia. Based on our findings, we discuss the processes and mechanisms of symbiont vertical transmission in P. okutanii.


Assuntos
Bactérias/classificação , Bivalves/microbiologia , Simbiose/fisiologia , Animais , Feminino , Brânquias/microbiologia , Oócitos/microbiologia
3.
BMC Genomics ; 21(1): 668, 2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-32993516

RESUMO

BACKGROUND: The clupeoid fishes are ecologically and commercially important fish species worldwide that exhibit a high level of population fluctuation, accompanied by alteration of reproductive traits. However, knowledge about their reproductive physiology in order to understand mechanisms underlying such population dynamics is limited. The endocrine system along with the brain-pituitary-gonadal (BPG) axis is critical for regulating reproduction. The aims of this study were to provide transcript data and genes related to the BPG axis, and to characterize the expression profiles of ovarian steroidogenesis-related genes in the Japanese sardine (Sardinops melanostictus, Clupeidae). RESULTS: RNA sequencing was performed using the sardine brain, pituitary, and gonad in both sexes. A total of 290,119 contigs were obtained and 115,173 non-redundant ORFs were annotated. The genes differentially expressed between ovary and testis were strongly associated with GO terms related to gamete production. The tissue-specific profile of the abundance of transcripts was characterized for the major regulators in the BPG axis, such as gonadotropin-releasing hormone, gonadotropin, and steroidogenic enzyme. By comparing between ovary and testis, out of eight different 17ß-hydroxysteroid dehydrogenase (Hsd17b) genes identified, higher hsd17b7 expression was found in testis, whereas higher expression of hsd17b8, hsd17b10, hsd17b12a, and hsd17b12b was found in ovary. The cDNAs encoding key endocrine factors in the ovarian steroidogenic pathway were cloned, sequenced, and quantitatively assayed. In the pituitary, follicle-stimulating hormone beta peaked during vitellogenesis, while luteinizing hormone beta peaked at the completion of vitellogenesis. In the ovary, follicle-stimulating hormone receptor and luteinizing hormone receptor were upregulated from mid- to late phase of vitellogenesis. Furthermore, three steroidogenic enzyme genes (cyp11a1, cyp17a1, and cyp19a1a) gradually increased their expression during ovarian development, accompanying a rise in serum estradiol-17ß, while 3ß-hydroxysteroid dehydrogenase and steroidogenic acute regulatory protein did not change significantly. CONCLUSIONS: This is the first report of deep RNA sequencing analysis of Japanese sardine, in which many key genes involved in the BPG axis were identified. Expression profiles of ovarian steroidogenesis-related genes provide a molecular basis of the physiological processes underlying ovarian development in the sardine. Our study will be a valuable resource for clarifying the molecular biology of clupeoid fishes.


Assuntos
Encéfalo/metabolismo , Peixes/genética , Hormônios Esteroides Gonadais/genética , Ovário/metabolismo , Hipófise/metabolismo , Transcriptoma , 11-beta-Hidroxiesteroide Desidrogenases/genética , 11-beta-Hidroxiesteroide Desidrogenases/metabolismo , Animais , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Feminino , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Hormônio Foliculoestimulante/genética , Hormônio Foliculoestimulante/metabolismo , Hormônios Esteroides Gonadais/metabolismo , Hormônio Luteinizante/genética , Hormônio Luteinizante/metabolismo
4.
BMC Evol Biol ; 19(1): 187, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31615417

RESUMO

BACKGROUND: Heliopora coerulea, the blue coral, is the octocoral characterized by its blue skeleton. Recently, two Heliopora species were delimited by DNA markers: HC-A and HC-B. To clarify the genomic divergence of these Heliopora species (HC-A and HC-B) from sympatric and allopatric populations in Okinawa, Japan, we used a high throughput reduced representation genomic DNA sequencing approach (ezRAD). RESULTS: We found 6742 biallelic SNPs shared among all target populations, which successfully distinguished the HC-A and HC-B species in both the sympatric and allopatric populations, with no evidence of hybridization between the two. In addition, we detected 410 fixed SNPs linking functional gene differences, including heat resilience and reproductive timing, between HC-A and HC-B. CONCLUSIONS: We confirmed clear genomic divergence between Heliopora species and found possible genes related to stress-responses and reproduction, which may shed light on the speciation process and ecological divergence of coral species.


Assuntos
Antozoários/genética , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Animais , Estudos de Associação Genética , Loci Gênicos , Genética Populacional , Geografia , Hibridização Genética , Japão , Filogenia , Especificidade da Espécie , Simpatria/genética
5.
Amino Acids ; 47(3): 571-8, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25501502

RESUMO

It has been suggested that invertebrates inhabiting deep-sea hydrothermal vent areas use the sulfinic acid hypotaurine, a precursor of taurine, to protect against the toxicity of hydrogen sulfide contained in the seawater from the vent. In this protective system, hypotaurine is accumulated in the gill, the primary site of sulfide exposure. However, the pathway for hypotaurine synthesis in mollusks has not been identified. In this study, we screened for the mRNAs of enzymes involved in hypotaurine synthesis in the deep-sea mussel Bathymodiolus septemdierum and cloned cDNAs encoding cysteine dioxygenase and cysteine sulfinate decarboxylase. As mRNAs encoding cysteamine dioxygenase and cysteine lyase were not detected, the cysteine sulfinate pathway is suggested to be the major pathway of hypotaurine and taurine synthesis. The two genes were found to be expressed in all the tissues examined, but the gill exhibited the highest expression. The mRNA level in the gill was not significantly changed by exposure to sulfides or thiosulfate. These results suggests that the gill of B. septemdierum maintains high levels of expression of the two genes regardless of ambient sulfide level and accumulates hypotaurine continuously to protect against sudden exposure to high level of sulfide.


Assuntos
Adaptação Fisiológica , Bivalves , Carboxiliases , Cisteína Dioxigenase , Sulfeto de Hidrogênio/metabolismo , Taurina/análogos & derivados , Animais , Bivalves/enzimologia , Bivalves/genética , Carboxiliases/biossíntese , Carboxiliases/genética , Cisteína Dioxigenase/biossíntese , Cisteína Dioxigenase/genética , Taurina/biossíntese , Taurina/genética
6.
J Exp Biol ; 216(Pt 23): 4403-14, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24031050

RESUMO

Deep-sea Calyptogena clams harbor thioautotrophic intracellular symbiotic bacteria in their gill epithelial cells. The symbiont fixes CO2 to synthesize organic compounds. Carbonic anhydrase (CA) from the host catalyzes the reaction CO2 + H2O ↔ HCO3(-) + H(+), and is assumed to facilitate inorganic carbon (Ci) uptake and transport to the symbiont. However, the localization of CA in gill tissue remains unknown. We therefore analyzed mRNA sequences, proteins and CA activity in Calyptogena okutanii using expression sequence tag, SDS-PAGE and LC-MS/MS. We found that acetazolamide-sensitive soluble CA was abundantly expressed in the gill tissue of C. okutanii, and the enzyme was purified by affinity chromatography. Mouse monoclonal antibodies against the CA of C. okutanii were used in western blot analysis and immunofluorescence staining of the gill tissues of C. okutanii, which showed that CA was exclusively localized in the symbiont-harboring cells (bacteriocytes) in gill epithelial cells. Western blot analysis and measurement of activity showed that CA was abundantly (26-72% of total soluble protein) detected in the gill tissues of not only Calyptogena clams but also deep-sea Bathymodiolus mussels that harbor thioautotrophic or methanotrophic symbiotic bacteria, but was not detected in a non-symbiotic mussel, Mytilus sp. The present study showed that CA is abundant in the gill tissues of deep-sea symbiotic bivalves and specifically localizes in the cytoplasm of bacteriocytes of C. okutanii. This indicates that the Ci supply process to symbionts in the vacuole (symbiosome) in bacteriocytes is essential for symbiosis.


Assuntos
Bivalves/enzimologia , Anidrases Carbônicas/análise , Sequência de Aminoácidos , Animais , Bivalves/citologia , Bivalves/microbiologia , Anidrases Carbônicas/metabolismo , Cromatografia Líquida , Eletroforese em Gel de Poliacrilamida , Brânquias/enzimologia , Dados de Sequência Molecular , RNA Mensageiro/química , Alinhamento de Sequência , Análise de Sequência de Proteína , Análise de Sequência de RNA , Simbiose , Espectrometria de Massas em Tandem
7.
Gene ; 884: 147695, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37549856

RESUMO

The planktonic diatom Chaetoceros tenuissimus sometimes forms blooms in coastal surface waters where dissolved inorganic phosphorus (P) is typically deficient. To understand the molecular mechanisms for survival under P-deficient conditions, we compared whole transcripts and metabolites with P-sufficient conditions using stationary growth cells. Under P-deficient conditions, cell numbers and photosynthetic activities decreased as cells entered the stationary growth phase, with downregulation of transcripts related to the Calvin cycle and glycolysis/gluconeogenesis. Therefore, metabolites varied across nutritional conditions. Alkaline phosphatase, phosphodiesterase, phytase, phosphate transporter, and transcription factor genes were drastically upregulated under dissolved inorganic P deficiency. Genes related to phospholipid degradation and nonphospholipid synthesis were also upregulated. These results indicate that C. tenuissimus rearranges its membrane composition from phospholipids to nonphospholipids to conserve phosphate. To endure in P-deficient conditions, C. tenuissimus modifies its gene responses, suggesting a potential survival strategy in nature.


Assuntos
Diatomáceas , Diatomáceas/genética , Fotossíntese , Plâncton , Fosfatos/metabolismo , Fósforo/metabolismo
8.
mBio ; 13(4): e0015622, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35856561

RESUMO

Marine algae viruses are important for controlling microorganism communities in the marine ecosystem and played fundamental roles during the early events of viral evolution. Here, we have focused on one major group of marine algae viruses, the single-stranded DNA (ssDNA) viruses from the Bacilladnaviridae family. We present the capsid structure of the bacilladnavirus Chaetoceros tenuissimus DNA virus type II (CtenDNAV-II), determined at 2.4-Å resolution. A structure-based phylogenetic analysis supported the previous theory that bacilladnaviruses have acquired their capsid protein via horizontal gene transfer from a ssRNA virus. The capsid protein contains the widespread virus jelly-roll fold but has additional unique features; a third ß-sheet and a long C-terminal tail. Furthermore, a low-resolution reconstruction of the CtenDNAV-II genome revealed a partially spooled structure, an arrangement previously only described for dsRNA and dsDNA viruses. Together, these results exemplify the importance of genetic recombination for the emergence and evolution of ssDNA viruses and provide important insights into the underlying mechanisms that dictate genome organization. IMPORTANCE Single-stranded DNA (ssDNA) viruses are an extremely widespread group of viruses that infect diverse hosts from all three domains of life, consequently having great economic, medical, and ecological importance. In particular, bacilladnaviruses are highly abundant in marine sediments and greatly influence the dynamic appearance and disappearance of certain algae species. Despite the importance of ssDNA viruses and the last couple of years' advancements in cryo-electron microscopy, structural information on the genomes of ssDNA viruses remains limited. This paper describes two important achievements: (i) the first atomic structure of a bacilladnavirus capsid, which revealed that the capsid protein gene presumably was acquired from a ssRNA virus in early evolutionary events; and (ii) the structural organization of a ssDNA genome, which retains a spooled arrangement that previously only been observed for double-stranded viruses.


Assuntos
Capsídeo , Vírus , Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Microscopia Crioeletrônica , Vírus de DNA/genética , DNA de Cadeia Simples/genética , Ecossistema , Eucariotos/genética , Genoma Viral , Filogenia , Vírus/genética
9.
FEMS Microbiol Lett ; 369(1)2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35906193

RESUMO

Phosphonic acid (phosphonate) that possesses a carbon-phosphours bond is a chemically stable form of organic phosphorus. Various phosphonic acids are widely distributed in oceanic waters; in particular, methylphosphonic acid (namely methylphosphonate) is believed to be responsible for global methane production. To discuss the microbial degradation of phosphonic acids, we investigated the utilization of phosphonic acid compounds by cultures of marine bacteria, Phaeobacter sp., Ruegeria sp. (Rhodobacterales), and Thalassospira sp. (Rhodospirillales). These bacterial cultures were able to grow on methylphosphonic acid as well as on the tested alkyl-, carboxy-, aminoalkyl-, and hydroxyalkyl-phosphonic acid compounds. Cell yields and growth rates of Ruegeria and Thalassospira cultures grown on methyl-, ethyl-, propyl-, and butyl-phosphonic acid compounds tended to decrease with increasing alkyl chain length. In contrast, Phaeobacter sp. grew well on such alkyl-phosphonic acids. Our results suggest that these marine bacteria, which exhibit varied utilization, are involved in microbial degradation of various phosphonic acid compounds.


Assuntos
Ácidos Fosforosos , Rhodobacteraceae , Oceanos e Mares , Fósforo
10.
Ecol Evol ; 12(5): e8884, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35600699

RESUMO

Environmental heterogeneity is one of the most influential factors that create compositional variation among local communities. Greater compositional variation is expected when an environmental gradient encompasses the most severe conditions where species sorting is more likely to operate. However, evidence for stronger species sorting at severer environment has typically been obtained for less mobile organisms and tests are scarce for those with higher dispersal ability that allows individuals to sensitively respond to environmental stress. Here, with the dynamics of fish communities in a Japanese bay revealed by environmental DNA metabarcoding analyses as a model case, we tested the hypothesis that larger environmental heterogeneity caused by severe seasonal hypoxia (lower concentration of oxygen in bottom waters in summer) leads to larger variation of species composition among communities. During summer, fish species richness was lower in the bottom layer, suggesting the severity of the hypoxic bottom water. In contrast to the prediction, we found that although the environmental parameters of bottom and surface water was clearly distinct in summer, fish species composition was more similar between the two layers. Our null model analysis suggested that the higher compositional similarity during hypoxia season was not a result of the sampling effect reflecting differences in the alpha or gamma diversity. Furthermore, a shift in the species occurrence from bottom to surface layers was observed during hypoxia season, which was consistent across species, suggesting that the severe condition in the bottom adversely affected fish species irrespective of their identity. These results suggest that larger environmental heterogeneity does not necessarily lead to higher compositional variation once the environmental gradient encompasses extremely severe conditions. This is most likely because individual organisms actively avoided the severity quasi-neutrally, which induced mass effect-like dispersal and lead to the mixing of species composition across habitats. By showing counter evidence against the prevailing view, we provide novel insights into how species sorting by environment acts in heterogeneous and severe conditions.

11.
Sci Rep ; 11(1): 22877, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34819553

RESUMO

Diatoms are one of the most prominent oceanic primary producers and are now recognized to be distributed throughout the world. They maintain their population despite predators, infections, and unfavourable environmental conditions. One of the smallest diatoms, Chaetoceros tenuissimus, can coexist with infectious viruses during blooms. To further understand this relationship, we sequenced the C. tenuissimus strain NIES-3715 genome. A gene fragment of a replication-associated gene from the infectious ssDNA virus (designated endogenous virus-like fragment, EVLF) was found to be integrated into each 41 Mb of haploid assembly. In addition, the EVLF was transcriptionally active and conserved in nine other C. tenuissimus strains from different geographical areas, although the primary structures of their proteins varied. The phylogenetic tree further suggested that the EVLF was acquired by the ancestor of C. tenuissimus. Additionally, retrotransposon genes possessing a reverse transcriptase function were more abundant in C. tenuissimus than in Thalassiosira pseudonana and Phaeodactylum tricornutum. Moreover, a target site duplication, a hallmark for long interspersed nuclear element retrotransposons, flanked the EVLF. Therefore, the EVLF was likely integrated by a retrotransposon during viral infection. The present study provides further insights into the diatom-virus evolutionary relationship.


Assuntos
Vírus de DNA/genética , DNA de Cadeia Simples/genética , Diatomáceas/genética , Evolução Molecular , Genoma , Integração Viral , Diatomáceas/virologia , Filogenia , Retroelementos , Especificidade da Espécie , Transcrição Gênica
12.
Biol Bull ; 240(1): 34-40, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33730534

RESUMO

AbstractVesicomyid clams, which inhabit deep-sea hydrothermal vents and hydrocarbon seeps, are nutritionally dependent on symbiotic, chemoautotrophic bacteria that produce organic matter by using hydrogen sulfide. Vesicomyid clams absorb hydrogen sulfide from the foot and transport it in their hemolymph to symbionts in the gill. However, mechanisms to cope with hydrogen sulfide toxicity are not fully understood. Previous studies on vent-specific invertebrates, including bathymodiolin mussels, suggest that hypotaurine, a precursor of taurine, mitigates hydrogen sulfide toxicity by binding it to bisulfide ion, so as to synthesize thiotaurine. In this study, we cloned cDNAs from the vesicomyid clam Phreagena okutanii for the taurine transporter that transports hypotaurine into cells and for cysteine dioxygenase and cysteine-sulfinate decarboxylase, major enzymes involved in hypotaurine synthesis. Results of reverse-transcription polymerase chain reaction indicate that mRNAs of these three genes are most abundant in the foot, followed by the gill. However, hypotaurine and thiotaurine levels, measured by reverse-phase high-performance liquid chromatography, were low in the foot and high in the gill. In addition, thiotaurine was detected in hemolymph cells. Hypotaurine synthesized in the foot may be transported to the gill after binding to bisulfide ion, possibly by hemolymph cells.


Assuntos
Bivalves , Sulfeto de Hidrogênio , Animais , Sulfeto de Hidrogênio/toxicidade , Taurina/análogos & derivados
13.
Appl Opt ; 49(18): 3470-3, 2010 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-20563199

RESUMO

We demonstrate amorphization in a Ge(10)Sb(2)Te(13) (GST) thin film through a nonthermal process by femtosecond electronic excitation. Amorphous recording marks were formed by irradiation with a single femtosecond pulse, and were confirmed to be recrystallized by laser thermal annealing. Scanning electron microscope observations revealed that amorphization occurred below the melting temperature. We performed femtosecond pump-probe measurements to investigate the amorphization dynamics of a GST thin film. We found that the reflectivity dropped abruptly within 500fs after excitation by a single pulse and that a small change in the reflectivity occurred within 5ps of this drop.

14.
Sci Rep ; 9(1): 9009, 2019 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-31227737

RESUMO

Toxic dinoflagellates belonging to the genus Dinophysis acquire plastids indirectly from cryptophytes through the consumption of the ciliate Mesodinium rubrum. Dinophysis acuminata harbours three genes encoding plastid-related proteins, which are thought to have originated from fucoxanthin dinoflagellates, haptophytes and cryptophytes via lateral gene transfer (LGT). Here, we investigate the origin of these plastid proteins via RNA sequencing of species related to D. fortii. We identified 58 gene products involved in porphyrin, chlorophyll, isoprenoid and carotenoid biosyntheses as well as in photosynthesis. Phylogenetic analysis revealed that the genes associated with chlorophyll and carotenoid biosyntheses and photosynthesis originated from fucoxanthin dinoflagellates, haptophytes, chlorarachniophytes, cyanobacteria and cryptophytes. Furthermore, nine genes were laterally transferred from fucoxanthin dinoflagellates, whose plastids were derived from haptophytes. Notably, transcription levels of different plastid protein isoforms varied significantly. Based on these findings, we put forth a novel hypothesis regarding the evolution of Dinophysis plastids that ancestral Dinophysis species acquired plastids from haptophytes or fucoxanthin dinoflagellates, whereas LGT from cryptophytes occurred more recently. Therefore, the evolutionary convergence of genes following LGT may be unlikely in most cases.


Assuntos
Proteínas de Cloroplastos/genética , Criptófitas/genética , Dinoflagellida/genética , Genes de Protozoários/genética , Haptófitas/genética , Plastídeos/genética , Proteínas de Cloroplastos/classificação , Proteínas de Cloroplastos/metabolismo , Criptófitas/metabolismo , Dinoflagellida/classificação , Dinoflagellida/metabolismo , Evolução Molecular , Transferência Genética Horizontal/genética , Haptófitas/metabolismo , Filogenia , Pigmentos Biológicos/biossíntese , Plastídeos/metabolismo , Análise de Sequência de DNA
15.
Harmful Algae ; 89: 101660, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31672234

RESUMO

Since 2002, blooms of Alexandrium catenella sensu Fraga et al. (2015) and paralytic shellfish toxicity events have occurred almost yearly in Osaka Bay, Japan. To better understand the triggers for reoccurring A. catenella blooms in Osaka Bay, phytoplankton community was monitored during the spring seasons of 2012-2015. Monitoring was performed using massively parallel sequencing (MPS)-based technique on amplicon sequences of the 18S rRNA gene. Dense blooms of A. catenella occurred every year except in 2012, however, there was no significant correlation with the environmental parameters investigated. Plankton community diversity decreased before and middle of the A. catenella blooms, suggesting that the decline in diversity could be an indicator for the bloom occurrence. The yearly abundance pattern of A. catenella cells obtained by morphology-based counting coincided with the relative sequence abundances, which supports the effectiveness of MPS-based phytoplankton monitoring.


Assuntos
Dinoflagellida , Baías , Sequenciamento de Nucleotídeos em Larga Escala , Japão , Fitoplâncton
16.
Biol Bull ; 232(2): 71-81, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28654333

RESUMO

Heliopora coerulea is the only species in the subclass Octocorallia that has a crystalline aragonite skeleton. The skeleton has been reported to contain the blue pigment, biliverdin IXα, which is formed by heme oxygenase (HO) during heme decomposition. There is little information regarding gene expression in H. coerulea; therefore, the biosynthesis pathway for biliverdin IXα is poorly understood. To identify the genes related to heme synthesis and degradation, metatranscripts of H. coerulea and its symbiont Symbiodinium spp. were sequenced and separated from the host- and symbiont-derived sequences. From the metatranscriptome analyses, all genes for heme synthesis and three HOs were isolated from the host and symbiont. From our phylogenetic and amino acid analysis, we noted that one of the HO isoforms in the host coral was predicted to possess HO activity. However, biliverdin reductase, which reduces biliverdin to bilirubin, was not identified in the present study. Similarly, biliverdin reductase was not identified in the transcripts of the red coral Corallium rubrum, a species that also belongs to Octocorallia. However, genes related to heme synthesis and HO were found in C. rubrum. We speculate that Heliopora coerulea can produce biliverdin and accumulate it in the skeleton, while red corals and other Octocorallia species cannot. Further information from molecular studies of H. coerulea will provide insights into the synthesis of biliverdin IXα, the blue pigment in the hard crystalline aragonite skeleton, and will be fundamental to future ecological and physiological studies.


Assuntos
Antozoários/genética , Biliverdina/genética , Animais , Antozoários/classificação , Heme/metabolismo , Heme Oxigenase (Desciclizante)/metabolismo , Filogenia , Transcriptoma
17.
Gene ; 585(2): 228-40, 2016 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-27016297

RESUMO

Deep-sea vesicomyid clams, including the genus Phreagena (formerly Calyptogena), harbor thioautotrophic bacterial symbionts in the host symbiosome, which consists of cytoplasmic vacuoles in gill epithelial cells called bacteriocytes. The symbiont requires inorganic carbon (Ci), such as CO2, HCO3(-), and CO3(2-), to synthesize organic compounds, which are utilized by the host clam. The dominant Ci in seawater is HCO3(-), which is impermeable to cell membranes. Within the bacteriocyte, cytoplasmic carbonic anhydrase (CA) from the host, which catalyzes the inter-conversion between CO2 and HCO3(-), has been shown to be abundant and is thought to supply intracellular CO2 to symbionts in the symbiosome. However, the mechanism of Ci uptake by the host gill from seawater is poorly understood. To elucidate the influx pathway of Ci into the bacteriocyte, we isolated the genes related to Ci uptake via the pyrosequencing of cDNA from the gill of Phreagena okutanii, and investigated their expression patterns. Using phylogenetic and amino acid sequence analyses, three solute carrier family 4 (SLC4) bicarbonate transporters (slc4co1, slc4co2, and slc4co4) and two membrane-associated CAs (mcaco1 and mcaco2) were identified as candidate genes for Ci uptake. In an in situ hybridization analysis of gill sections, the expression of mcaco1 and mcaco2 was detected in the bacteriocytes and asymbiotic non-ciliated cells, respectively, and the expression of slc4co1 and slc4co2 was detected in the asymbiotic cells, including the intermediate cells of the inner area and the non-ciliated cells of the external area. Although subcellular localizations of the products of these genes have not been fully elucidated, they may play an important role in the uptake of Ci into the bacteriocytes. These findings will improve our understanding of the Ci transport system in the symbiotic relationships of chemosynthetic bivalves.


Assuntos
Bivalves/genética , Carbono/metabolismo , Proteínas de Transporte/genética , Brânquias/metabolismo , Biologia Marinha , Sequência de Aminoácidos , Animais , Bicarbonatos/metabolismo , Bivalves/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Hibridização In Situ , Dados de Sequência Molecular , Filogenia , Homologia de Sequência de Aminoácidos
18.
Gene ; 576(2 Pt 1): 681-9, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26476293

RESUMO

In this study, we compared the eukaryote biodiversity between Hiroshima Bay and Ishigaki Island in Japanese coastal waters by using the massively parallel sequencing (MPS)-based technique to collect preliminary data. The relative abundance of Alveolata was highest in both localities, and the second highest groups were Stramenopiles, Opisthokonta, or Hacrobia, which varied depending on the samples considered. For microalgal phyla, the relative abundance of operational taxonomic units (OTUs) and the number of MPS were highest for Dinophyceae in both localities, followed by Bacillariophyceae in Hiroshima Bay, and by Bacillariophyceae or Chlorophyceae in Ishigaki Island. The number of detected OTUs in Hiroshima Bay and Ishigaki Island was 645 and 791, respectively, and 15.3% and 12.5% of the OTUs were common between the two localities. In the non-metric multidimensional scaling analysis, the samples from the two localities were plotted in different positions. In the dendrogram developed using similarity indices, the samples were clustered into different nodes based on localities with high multiscale bootstrap values, reflecting geographic differences in biodiversity. Thus, we succeeded in demonstrating biodiversity differences between the two localities, although the read numbers of the MPSs were not high enough. The corresponding analysis showed a clear seasonal change in the biodiversity of Hiroshima Bay but it was not clear in Ishigaki Island. Thus, the MPS-based technique shows a great advantage of high performance by detecting several hundreds of OTUs from a single sample, strongly suggesting the effectiveness to apply this technique to routine monitoring programs.


Assuntos
Biodiversidade , Células Eucarióticas/classificação , Sequenciamento de Nucleotídeos em Larga Escala/métodos , DNA de Plantas/genética , Japão , Fitoplâncton/classificação , Fitoplâncton/genética , Inquéritos e Questionários
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA