Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Strength Cond Res ; 38(2): 283-289, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37884002

RESUMO

ABSTRACT: Horsley, BJ, Tofari, PJ, Halson, SL, Kemp, JG, Johnston, RD, and Cormack, SJ. Thoracic-worn accelerometers detect fatigue-related changes in vertical stiffness during sprinting. J Strength Cond Res 38(2): 283-289, 2024-Thoracic-mounted accelerometers are valid and reliable for analyzing gait characteristics and may provide the opportunity to assess running-related neuromuscular fatigue (NMF) during training and competition without the need for additional tests, such as a countermovement jump (CMJ). However, their sensitivity for detecting fatigue-related changes in gait across different speeds is unclear. We, therefore, assessed the changes in accelerometer-derived gait characteristics, including vertical stiffness (K vert ), following a repeated sprint protocol (RSP). Sixteen recreationally active subjects performed single and repeated CMJs on a force plate and 40 m run throughs overground at 3-4, 5-6, and 7-8 m·s -1 pre-post a 12 × 40 m RSP. Gait characteristics (contact time, step frequency, step length, K vert , etc.) were derived from an accelerometer contained within a global navigation satellite system unit on the thoracic spine using a validated algorithm. Changes in running gait and CMJ performance were assessed using a linear mixed-effects model (95% confidence interval [95% CI]; effect size [ES]). Significance was set at p < 0.05. A significant reduction in K vert occurred at 7-8 m·s -1 following the RSP (-8.51 kN·m -1 [-13.9, -3.11]; p = 0.007; ES [95% CI] = -0.39 [-0.62, -0.15]) which coincided with a decreased jump height (-0.03 m [-0.04, -0.01]; p = 0.002; ES [95% CI] = -0.87 [-1.41, -0.30]). However, all other gait characteristics were not significantly different irrespective of speed. Thoracic-worn accelerometers can detect changes in K vert at 7-8 m·s -1 which may be useful for monitoring NMF during sprinting. However, a RSP does not result in altered gait mechanics in subsequent running at lower speeds.


Assuntos
Desempenho Atlético , Corrida , Humanos , Marcha , Algoritmos , Acelerometria
2.
J Strength Cond Res ; 38(2): 274-282, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37884006

RESUMO

ABSTRACT: Horsley, BJ, Tofari, PJ, Halson, SL, Kemp, JG, Chalkley, D, Cole, MH, Johnston, RD, and Cormack, SJ. Validity and reliability of thoracic-mounted inertial measurement units to derive gait characteristics during running. J Strength Cond Res 38(2): 274-282, 2024-Inertial measurement units (IMUs) attached to the tibia or lumbar spine can be used to analyze running gait but, with team-sports, are often contained in global navigation satellite system (GNSS) units worn on the thoracic spine. We assessed the validity and reliability of thoracic-mounted IMUs to derive gait characteristics, including peak vertical ground reaction force (vGRF peak ) and vertical stiffness (K vert ). Sixteen recreationally active subjects performed 40 m run throughs at 3-4, 5-6, and 7-8 m·s -1 . Inertial measurement units were attached to the tibia, lumbar, and thoracic spine, whereas 2 GNSS units were also worn on the thoracic spine. Initial contact (IC) from a validated algorithm was evaluated with F1 score and agreement (mean difference ± SD ) of gait data with the tibia and lumbar spine using nonparametric limits of agreement (LoA). Test-retest error {coefficient of variation, CV (95% confidence interval [CI])} established reliability. Thoracic IMUs detected a nearly perfect proportion (F1 ≥ 0.95) of IC events compared with tibia and lumbar sites. Step length had the strongest agreement (0 ± 0.04 m) at 3-4 m·s -1 , whereas contact time improved from 3 to 4 (-0.028 ± 0.018 second) to 7-8 m·s -1 (-0.004 ± 0.013 second). All values for K vert fell within the LoA at 7-8 m·s -1 . Test-retest error was ≤12.8% for all gait characteristics obtained from GNSS units, where K vert was most reliable at 3-4 m·s -1 (6.8% [5.2, 9.6]) and vGRF peak at 7-8 m·s -1 (3.7% [2.5, 5.2]). The thoracic-spine site is suitable to derive gait characteristics, including K vert , from IMUs within GNSS units, eliminating the need for additional sensors to analyze running gait.


Assuntos
Marcha , Corrida , Humanos , Reprodutibilidade dos Testes , Algoritmos , Esportes de Equipe , Fenômenos Biomecânicos
3.
Sports Med ; 51(7): 1449-1489, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33761128

RESUMO

BACKGROUND: Inertial measurement units (IMUs) are used for running gait analysis in a variety of sports. These sensors have been attached at various locations to capture stride data. However, it is unclear if different placement sites affect the derived outcome measures. OBJECTIVE: The aim of this systematic review and meta-analysis was to investigate the impact of placement on the validity and reliability of IMU-derived measures of running gait. METHODS: Online databases SPORTDiscus with Full Text, CINAHL Complete, MEDLINE (EBSCOhost), EMBASE (Ovid) and Scopus were searched from the earliest record to 6 August 2020. Articles were included if they (1) used an IMU during running (2) reported spatiotemporal variables, peak ground reaction force (GRF) or vertical stiffness and (3) assessed validity or reliability. Meta-analyses were performed for a pooled validity estimate when (1) studies reported means and standard deviation for variables derived from the IMU and criterion (2) used the same IMU placement and (3) determined validity at a comparable running velocity (≤ 1 m·s-1 difference). RESULTS: Thirty-nine articles were included, where placement varied between the foot, tibia, hip, sacrum, lumbar spine (LS), torso and thoracic spine (TS). Initial contact, toe-off, contact time (CT), flight time (FT), step time, stride time, swing time, step frequency (SF), step length (SL), stride length, peak vertical and resultant GRF and vertical stiffness were analysed. Four variables (CT, FT, SF and SL) were meta-analysed, where CT was compared between the foot, tibia and LS placements and SF was compared between foot and LS. Foot placement data were meta-analysed for FT and SL. All data are the mean difference (MD [95%CI]). No significant difference was observed for any site compared to the criterion for CT (foot: - 11.47 ms [- 45.68, 22.74], p = 0.43; tibia: 22.34 ms [- 18.59, 63.27], p = 0.18; LS: - 48.74 ms [- 120.33, 22.85], p = 0.12), FT (foot: 11.93 ms [- 8.88, 32.74], p = 0.13), SF (foot: 0.45 step·min-1 [- 1.75, 2.66], p = 0.47; LS: - 3.45 step·min-1 [- 16.28, 9.39], p = 0.37) and SL (foot: 0.21 cm [- 1.76, 2.18], p = 0.69). Reliable derivations of CT (coefficient of variation [CV] < 9.9%), FT (CV < 11.6%) and SF (CV < 4.4%) were shown using foot- and LS-worn IMUs, while the CV was < 7.8% for foot-determined stride time, SL and stride length. Vertical GRF was reliable from the LS (CV = 4.2%) and TS (CV = 3.3%) using a spring-mass model, while vertical stiffness was moderately (r = 0.66) and nearly perfectly (r = 0.98) correlated with criterion measures from the TS. CONCLUSION: Placement of IMUs on the foot, tibia and LS is suitable to derive valid and reliable stride data, suggesting measurement site may not be a critical factor. However, evidence regarding the ability to accurately detect stride events from the TS is unclear and this warrants further investigation.


Assuntos
Corrida , Fenômenos Biomecânicos , , Marcha , Humanos , Reprodutibilidade dos Testes , Tronco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA