Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(18)2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37762480

RESUMO

Dipeptidyl peptidase 3 (DPP3) is a zinc-dependent exopeptidase with broad specificity for four to eight amino acid residue substrates. It has a role in the regulation of oxidative stress response NRF2-KEAP1 pathway through the interaction with KEAP1. We have conducted stable isotope labeling by amino acids in a cell culture coupled to mass spectrometry (SILAC-MS) interactome analysis of TRex HEK293T cells using DPP3 as bait and identified SH2 Domain-Containing Protein 3C (SH2D3C) as prey. SH2D3C is one of three members of a family of proteins that contain both the SH2 domain and a domain similar to guanine nucleotide exchange factor domains of Ras family GTPases (Ras GEF-like domain), named novel SH2-containing proteins (NSP). NSPs, including SH2D3C (NSP3), are adaptor proteins involved in the regulation of adhesion, migration, tissue organization, and immune response. We have shown that SH2D3C binds to DPP3 through its C-terminal Ras GEF-like domain, detected the colocalization of the proteins in living cells, and confirmed direct interaction in the cytosol and membrane ruffles. Computational analysis also confirmed the binding of the C-terminal domain of SH2D3C to DPP3, but the exact model could not be discerned. This is the first indication that DPP3 and SH2D3C are interacting partners, and further studies to elucidate the physiological significance of this interaction are on the way.

2.
Beilstein J Org Chem ; 19: 550-565, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37153642

RESUMO

Two novel conjugate molecules were designed: pyrene and phenanthridine-amino acid units with a different linker length between the aromatic fragments. Molecular modelling combined with spectrophotometric experiments revealed that in neutral and acidic buffered water solutions conjugates predominantly exist in intramolecularly stacked conformations because of the π-π stacking interaction between pyrene and phenanthridine moieties. The investigated systems exhibited a pH-dependent excimer formation that is significantly red-shifted relative to the pyrene and phenanthridine fluorescence. While the conjugate with a short linker showed negligible spectrophotometric changes due to the polynucleotide addition, the conjugate with a longer and more flexible linker exhibited a micromolar and submicromolar binding affinity for ds-polynucleotides and inactivated a mutant of dipeptidyl peptidase enzyme E451A. Confocal microscopy revealed that the conjugate with the longer linker entered the HeLa cell membranes and blue fluorescence was visualized as the dye accumulated in the cell membrane.

3.
Bioorg Chem ; 127: 105999, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35809513

RESUMO

New monomethine, unsymmetrical styryl dyes consisting of benzothiazole and N-methylpiperazine or N-phenylpiperazine scaffolds were synthesized, and their binding affinities for different ds-polynucleotides and G-quadruplex were studied. Substitution of piperazine unit with methyl or phenyl group strongly influenced their binding modes, binding affinities, spectroscopic responses and antiproliferative activities. Compounds with N-methylpiperazine substituents showed a significant preference for AT-DNA polynucleotides and demonstrated AT-minor groove binding, which manifested in strong fluorescence increase, significant double helix stabilization, and positive induced circular dichroism spectra. These compounds formed complexes with G-quadruplex by π-π stacking interactions of dye with the top or bottom G-tetrad. Bulkier compounds with N-phenylpiperazine function are probably bound to ds-polynucleotide by partial intercalation between base pairs. On the other hand, they showed stronger stabilization of G-quadruplex compared to methyl-substituted compounds. Fluorimetric titrations pointed to possible mixed stoichiometry's: 1:1 complex with π-π stacking interactions of dye on the top or bottom G-tetrad and 1:2 complex with dye positioned between two G-quadruplex molecules. Bulkier dyes with N-phenylpiperazine fragments demonstrated micromolar and submicromolar antiproliferative activity that was especially pronounced for leukaemia and lymphoma. Flow cytometric assay shows dose- and time-dependent increase in SubG0/G1 phase. Furthermore, the compounds enter the cells readily and accumulate in the mitochondrial space, co-localize with the standard mitochondrial markers.


Assuntos
Corantes , Quadruplex G , DNA/química , Ligantes , Piperazinas/farmacologia , Polinucleotídeos , Medicina de Precisão
4.
Bioorg Chem ; 103: 104178, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32891859

RESUMO

Muramic acid (Mur), a sugar amino acid (SAA), is present in the cell walls of bacteria asN-acetyl muramic acid (MurNAc) where together with ofN-acetylglucosamine (GlcNAc) and peptide makes main building block of peptidoglycan (PGN). It was challenging to incorporate muramic acid as SAA characteristic for bacteria into the peptides and investigate the antimicrobial activity of these scaffolds. Four building units were used in designing the desired peptide: muramic acid, tetrapeptide Leu-Ser-Lys-Leu, Nε-Lys, and Asn. Positions of three components were changeable while the position of Asn was always C-terminal (in linear peptides). The glycopeptide libraries of linear and cyclic peptides were synthesized using solid-phase peptide synthesis (SPPS). The antimicrobial effect of linear and cyclic glycopeptides, as well as the LSKL sequence used as a control, was investigated on several standard laboratory microbial strains. Liner glycopeptide with sequences Leu-Ser-Lys-Leu-Nε-Lys-Mur-Asn was active onStaphylococcus aureus(Gram-positive bacteria). Prepared compounds did not show activity towards applied tumor and normal human cell lines.


Assuntos
Ácidos Murâmicos/uso terapêutico , Proteínas Citotóxicas Formadoras de Poros/síntese química , Proteínas Citotóxicas Formadoras de Poros/uso terapêutico , Humanos , Estrutura Molecular , Ácidos Murâmicos/farmacologia , Proteínas Citotóxicas Formadoras de Poros/farmacologia , Relação Estrutura-Atividade
5.
Bioelectrochemistry ; 150: 108360, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36621049

RESUMO

The aim of this biophysical study is to characterize reconstructed membrane vesicles obtained from microalgae in terms of their morphology, properties, composition, and ability to transport a model drug. The reconstructed vesicles were either emptied or non-emptied and exhibited a non-uniform distribution of spherical surface structures that could be associated with surface coat proteins, while in between there were pore-like structures of up to 10 nm that could contribute to permeability. The reconstructed vesicles were very soft and hydrophilic, which could be attributed to their composition. The vesicles were rich in proteins and were mostly derived from the cytoplasm and chloroplasts. We demonstrated that all lipid classes of D. tertiolecta are involved in the formation of the reconstructed membrane vesicles, where they play fundamental role to maintain the vesicle structure. The vesicles appeared to be permeable to calcein, impermeable to FITC-ovalbumin, and semipermeable to FITC-concanavalin A, which may be due to a specific surface interaction with glucose/mannose units that could serve as a basis for the development of drug carriers. Finally, the reconstructed membrane vesicles could pave a new way as sustainable and environmentally friendly marine bioinspired carriers and serve for studies on microtransport of materials and membrane-related processes contributing to advances in life sciences and biotechnology.


Assuntos
Microalgas , Fluoresceína-5-Isotiocianato , Sistemas de Liberação de Medicamentos , Portadores de Fármacos/química , Proteínas de Membrana
6.
Biomolecules ; 13(1)2023 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-36671513

RESUMO

The binding interactions of six ligands, neutral and monocationic asymmetric monomethine cyanine dyes comprising benzoselenazolyl moiety with duplex DNA and RNA and G-quadruplex structures were evaluated using fluorescence, UV/Vis (thermal melting) and circular dichroism (CD) spectroscopy. The main objective was to assess the impact of different substituents (methyl vs. sulfopropyl vs. thiopropyl/thioethyl) on the nitrogen atom of the benzothiazolyl chromophore on various nucleic acid structures. The monomethine cyanine dyes with methyl substituents showed a 100-fold selectivity for G-quadruplex versus duplex DNA. Study results indicate that cyanines bind with G-quadruplex via end π-π stacking interactions and possible additional interactions with nucleobases/phosphate backbone of grooves or loop bases. Cyanine with thioethyl substituent distinguishes duplex DNA and RNA and G-quadruplex structures by distinctly varying ICD signals. Furthermore, cell viability assay reveals the submicromolar activity of cyanines with methyl substituents against all tested human cancer cell lines. Confocal microscopy analysis shows preferential accumulation of cyanines with sulfopropyl and thioethyl substituents in mitochondria and indicates localization of cyanines with methyl in nucleus, particularly nucleolus. This confirms the potential of examined cyanines as theranostic agents, possessing both fluorescent properties and cell viability inhibitory effect.


Assuntos
Quadruplex G , Selênio , Humanos , Medicina de Precisão , DNA/química , Dicroísmo Circular , Corantes Fluorescentes/farmacologia , Corantes Fluorescentes/química , RNA
7.
FEMS Yeast Res ; 11(8): 631-42, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22093747

RESUMO

Glutathione is an important antioxidant in most prokaryotes and eukaryotes. It detoxifies reactive oxygen species and is also involved in the modulation of gene expression, in redox signaling, and in the regulation of enzymatic activities. In this study, the subcellular distribution of glutathione was studied in Saccharomyces cerevisiae by quantitative immunoelectron microscopy. Highest glutathione contents were detected in mitochondria and subsequently in the cytosol, nuclei, cell walls, and vacuoles. The induction of oxidative stress by hydrogen peroxide (H(2) O(2) ) led to changes in glutathione-specific labeling. Three cell types were identified. Cell types I and II contained more glutathione than control cells. Cell type II differed from cell type I in showing a decrease in glutathione-specific labeling solely in mitochondria. Cell type III contained much less glutathione contents than the control and showed the strongest decrease in mitochondria, suggesting that high and stable levels of glutathione in mitochondria are important for the protection and survival of the cells during oxidative stress. Additionally, large amounts of glutathione were relocated and stored in vacuoles in cell type III, suggesting the importance of the sequestration of glutathione in vacuoles under oxidative stress.


Assuntos
Glutationa/metabolismo , Mitocôndrias/metabolismo , Estresse Oxidativo/fisiologia , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Núcleo Celular/metabolismo , Parede Celular/metabolismo , Citosol/metabolismo , Glutamato-Cisteína Ligase/genética , Glutationa/análise , Glutationa/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Viabilidade Microbiana/efeitos dos fármacos , Microscopia Imunoeletrônica , Oxidantes/farmacologia , Oxirredução , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestrutura , Deleção de Sequência , Vacúolos/metabolismo
8.
Bioelectrochemistry ; 134: 107524, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32272336

RESUMO

Plasma membrane vesicles can be effective, non-toxic carriers for microscale material transport, provide a convenient model for probing membrane-related processes, since intracellular biochemical processes are eliminated. We describe here a fine-tuned protocol for isolating ghost plasma membrane vesicles from the unicellular alga Dunaliella tertiolecta, and preliminary characterization of their structural features and permeability properties, with comparisons to giant unilamellar phospholipid vesicles. The complexity of the algal ghost membrane vesicles reconstructed from the native membrane material released after hypoosmotic stress lies between that of phospholipid vesicles and cells. AFM structural characterization of reconstructed vesicles shows a thick envelope and a nearly empty vesicle interior. The surface of the envelope contains a heterogeneous distribution of densely packed, nanometer-scale globules and pore-like structures which may be derived from surface coat proteins. Confocal fluorescence imaging reveals the highly pigmented photosynthetic apparatus located within the thylakoid membrane and retained in the vesicle membrane. Transport of the fluorescent dye calcein into ghost and giant unilamellar vesicles reveals significant differences in permeability. Expanded knowledge of this unique membrane system will contribute to the design of marine bio-inspired carriers for advanced biotechnological applications.


Assuntos
Membrana Celular/metabolismo , Clorofíceas/citologia , Fluorescência , Lipossomas Unilamelares/metabolismo , Fracionamento Celular , Permeabilidade da Membrana Celular
9.
J Plant Physiol ; 243: 153048, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31639536

RESUMO

Investigations of the luminal immunophilin AtCYP38 (cyclophilin 38) in Arabidopsis thaliana (At), the orthologue of the complex immunophilin TLP40 from Spinacia oleracea, revealed its involvement in photosystem II (PSII) repair and assembly, biogenesis of PSII complex, and cellular signalling. However, the main physiological roles of AtCYP38 and TLP40 are related to regulation of thylakoid PP2A-type phosphatase involved in PSII core protein dephosphorylation, and chaperone function during protein folding. Here we further investigate physiological roles of AtCYP38 and analyse the ultrastructure of chloroplasts from cyp38-2 plants. Transmission electron microscopy followed by quantitative micrography revealed modifications in thylakoid stacking. We also confirm that the depletion of AtCYP38 influences PSII performance, which leads to stunted phenotype of cyp38-2 plants.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Ciclofilinas/genética , Complexo de Proteína do Fotossistema II/metabolismo , Tilacoides/metabolismo , Arabidopsis/enzimologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Cloroplastos/ultraestrutura , Ciclofilinas/metabolismo , Microscopia Eletrônica de Transmissão
10.
Chem Commun (Camb) ; 48(59): 7407-9, 2012 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-22715463

RESUMO

Chiral amino acid and biphenyl incorporating oxalamide gelators 4-7 with large, 9 bond distance between chiral centres and biphenyl units have been studied. CD investigation of 4-octanol gel and the crystal structure of rac-4 reveal that efficient central to axial chirality transfer occurs by intermolecular interactions in gel and solid state assemblies.


Assuntos
Aminoácidos/química , Octanóis/química , Dicroísmo Circular , Géis/química , Estrutura Molecular , Estereoisomerismo
11.
Immunobiology ; 216(1-2): 132-44, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-20638153

RESUMO

Aminopeptidase N (APN; CD13) is a ubiquitous membrane-bound enzyme. Expressed on haematopoietic cells APN participates in inflammatory and immune responses by regulating local concentration of chemotactic peptides and by fine-tuning antigen presentation. The data of this study have shown for the first time that cells of murine macrophage line, J774, often used as a model cell line, express CD13 both at transcriptional level and at the level of membrane protein with aminopeptidase N (APN) activity. The level of transcriptional expression of CD13/APN on J774 cells was compared to that found on normal cells participating in immune responses. The highest CD13/APN level was found in peritoneal macrophages, followed by J774 cells and splenocytes, whereas lymph node, thymus and bone-marrow cells expressed low level of CD13/APN mRNA. Further, the CD13 (mRNA, protein and APN) on J774 cells could be up-regulated by pro-inflammatory IFN-γ which is in agreement with the known role of CD13/APN in inflammatory responses. Co-regulation of CD13 with MHC-II and CD86 is in line with the reported role of APN expressed on human cells in antigen presentation. CD13 on J774 cells co-localize with mannose receptors (MR), and co-internalize upon MR ligation by ovalbumin, suggesting a new function of CD13 in MR-mediated phagocytosis. That function of CD13 is independent of APN enzyme activity. Anti-inflammatory drug dexamethasone diminished the IFN-γ-induced increase of CD13. The observed down-regulation of CD13 on J774 cells by dexamethasone might be relevant as a possible mechanism involved in action of anti-inflammatory drugs on normal macrophages.


Assuntos
Antígenos CD13/metabolismo , Interferon gama/metabolismo , Lectinas Tipo C/metabolismo , Macrófagos Peritoneais/metabolismo , Lectinas de Ligação a Manose/metabolismo , Receptores de Superfície Celular/metabolismo , Animais , Apresentação de Antígeno/efeitos dos fármacos , Antígenos CD13/genética , Antígenos CD13/imunologia , Linhagem Celular , Quimiotaxia/efeitos dos fármacos , Quimiotaxia/imunologia , Dexametasona/farmacologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/imunologia , Interferon gama/imunologia , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/patologia , Receptor de Manose , Camundongos , Camundongos Endogâmicos BALB C , Transporte Proteico
12.
Protoplasma ; 246(1-4): 65-72, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20349253

RESUMO

Glutathione plays numerous important functions in eukaryotic and prokaryotic cells. Whereas it can be found in virtually all eukaryotic cells, its production in prokaryotes is restricted to cyanobacteria and proteobacteria and a few strains of gram-positive bacteria. In bacteria, it is involved in the protection against reactive oxygen species (ROS), osmotic shock, acidic conditions, toxic chemicals, and heavy metals. Glutathione synthesis in bacteria takes place in two steps out of cysteine, glutamate, and glycine. Cysteine is the limiting factor for glutathione biosynthesis which can be especially crucial for cyanobacteria, which rely on both the sufficient sulfur supply from the growth media and on the protection of glutathione against ROS that are produced during photosynthesis. In this study, we report a method that allows detection and visualization of the subcellular distribution of glutathione in Synechocystis sp. This method is based on immunogold cytochemistry with glutathione and cysteine antisera and computer-supported transmission electron microscopy. Labeling of glutathione and cysteine was restricted to the cytosol and interthylakoidal spaces. Glutathione and cysteine could not be detected in carboxysomes, cyanophycin granules, cell walls, intrathylakoidal spaces, periplasm, and vacuoles. The accuracy of the glutathione and cysteine labeling is supported by two observations. First, preadsorption of the antiglutathione and anticysteine antisera with glutathione and cysteine, respectively, reduced the density of the gold particles to background levels. Second, labeling of glutathione and cysteine was strongly decreased by 98.5% and 100%, respectively, in Synechocystis sp. cells grown on media without sulfur. This study indicates a strong similarity of the subcellular distribution of glutathione and cysteine in cyanobacteria and plastids of plants and provides a deeper insight into glutathione metabolism in bacteria.


Assuntos
Cianobactérias/metabolismo , Cisteína/metabolismo , Glutationa/metabolismo , Cianobactérias/ultraestrutura , Microscopia Eletrônica de Transmissão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA