Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Hum Mol Genet ; 32(4): 580-594, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36067010

RESUMO

DEPDC5 (DEP Domain-Containing Protein 5) encodes an inhibitory component of the mammalian target of rapamycin (mTOR) pathway and is commonly implicated in sporadic and familial focal epilepsies, both non-lesional and in association with focal cortical dysplasia. Germline pathogenic variants are typically heterozygous and inactivating. We describe a novel phenotype caused by germline biallelic missense variants in DEPDC5. Cases were identified clinically. Available records, including magnetic resonance imaging and electroencephalography, were reviewed. Genetic testing was performed by whole exome and whole-genome sequencing and cascade screening. In addition, immunohistochemistry was performed on skin biopsy. The phenotype was identified in nine children, eight of which are described in detail herein. Six of the children were of Irish Traveller, two of Tunisian and one of Lebanese origin. The Irish Traveller children shared the same DEPDC5 germline homozygous missense variant (p.Thr337Arg), whereas the Lebanese and Tunisian children shared a different germline homozygous variant (p.Arg806Cys). Consistent phenotypic features included extensive bilateral polymicrogyria, congenital macrocephaly and early-onset refractory epilepsy, in keeping with other mTOR-opathies. Eye and cardiac involvement and severe neutropenia were also observed in one or more patients. Five of the children died in infancy or childhood; the other four are currently aged between 5 months and 6 years. Skin biopsy immunohistochemistry was supportive of hyperactivation of the mTOR pathway. The clinical, histopathological and genetic evidence supports a causal role for the homozygous DEPDC5 variants, expanding our understanding of the biology of this gene.


Assuntos
Epilepsias Parciais , Síndromes Epilépticas , Megalencefalia , Polimicrogiria , Humanos , Mutação , Proteínas Ativadoras de GTPase/genética , Serina-Treonina Quinases TOR/genética , Epilepsias Parciais/genética , Megalencefalia/genética
2.
J Am Soc Nephrol ; 28(3): 963-970, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27659767

RESUMO

Bardet-Biedl syndrome is a rare autosomal recessive, multisystem disease characterized by retinal dystrophy, renal malformation, obesity, intellectual disability, polydactyly, and hypogonadism. Nineteen disease-causing genes (BBS1-19) have been identified, of which mutations in BBS1 are most common in North America and Europe. A hallmark of the disease, renal malformation is heterogeneous and is a cause of morbidity and mortality through the development of CKD. We studied the prevalence and severity of CKD in 350 patients with Bardet-Biedl syndrome-related renal disease attending the United Kingdom national Bardet-Biedl syndrome clinics to further elucidate the phenotype and identify risk indicators of CKD. Overall, 31% of children and 42% of adults had CKD; 6% of children and 8% of adults had stage 4-5 CKD. In children, renal disease was often detected within the first year of life. Analysis of the most commonly mutated disease-associated genes revealed that, compared with two truncating mutations, two missense mutations associated with less severe CKD in adults. Moreover, compared with mutations in BBS10, mutations in BBS1 associated with less severe CKD or lack of CKD in adults. Finally, 51% of patients with available ultrasounds had structural renal abnormalities, and 35% of adults were hypertensive. The presence of structural abnormalities or antihypertensive medication also correlated statistically with stage 3b-5 CKD. This study describes the largest reported cohort of patients with renal disease in Bardet-Biedl syndrome and identifies risk factors to be considered in genetic counseling.


Assuntos
Síndrome de Bardet-Biedl/complicações , Insuficiência Renal Crônica/epidemiologia , Insuficiência Renal Crônica/etiologia , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Mutação , Prevalência , Insuficiência Renal Crônica/genética , Estudos Retrospectivos , Fatores de Risco , Índice de Gravidade de Doença , Adulto Jovem
3.
Nat Genet ; 38(12): 1397-405, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17086182

RESUMO

Nephrotic syndrome, a malfunction of the kidney glomerular filter, leads to proteinuria, edema and, in steroid-resistant nephrotic syndrome, end-stage kidney disease. Using positional cloning, we identified mutations in the phospholipase C epsilon gene (PLCE1) as causing early-onset nephrotic syndrome with end-stage kidney disease. Kidney histology of affected individuals showed diffuse mesangial sclerosis (DMS). Using immunofluorescence, we found PLCepsilon1 expression in developing and mature glomerular podocytes and showed that DMS represents an arrest of normal glomerular development. We identified IQ motif-containing GTPase-activating protein 1 as a new interaction partner of PLCepsilon1. Two siblings with a missense mutation in an exon encoding the PLCepsilon1 catalytic domain showed histology characteristic of focal segmental glomerulosclerosis. Notably, two other affected individuals responded to therapy, making this the first report of a molecular cause of nephrotic syndrome that may resolve after therapy. These findings, together with the zebrafish model of human nephrotic syndrome generated by plce1 knockdown, open new inroads into pathophysiology and treatment mechanisms of nephrotic syndrome.


Assuntos
Mutação , Síndrome Nefrótica/enzimologia , Síndrome Nefrótica/genética , Fosfolipases Tipo C/genética , Animais , Criança , Pré-Escolar , Clonagem Molecular , Modelos Animais de Doenças , Feminino , Marcação de Genes , Genes Recessivos , Homozigoto , Humanos , Lactente , Rim/enzimologia , Rim/patologia , Masculino , Modelos Genéticos , Mutação de Sentido Incorreto , Síndrome Nefrótica/tratamento farmacológico , Síndrome Nefrótica/patologia , Fosfoinositídeo Fosfolipase C , Ratos , Deleção de Sequência , Peixe-Zebra/genética
4.
Nat Genet ; 36(9): 994-8, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15322545

RESUMO

Defects in cilia are associated with several human disorders, including Kartagener syndrome, polycystic kidney disease, nephronophthisis and hydrocephalus. We proposed that the pleiotropic phenotype of Bardet-Biedl syndrome (BBS), which encompasses retinal degeneration, truncal obesity, renal and limb malformations and developmental delay, is due to dysfunction of basal bodies and cilia. Here we show that individuals with BBS have partial or complete anosmia. To test whether this phenotype is caused by ciliary defects of olfactory sensory neurons, we examined mice with deletions of Bbs1 or Bbs4. Loss of function of either BBS protein affected the olfactory, but not the respiratory, epithelium, causing severe reduction of the ciliated border, disorganization of the dendritic microtubule network and trapping of olfactory ciliary proteins in dendrites and cell bodies. Our data indicate that BBS proteins have a role in the microtubule organization of mammalian ciliated cells and that anosmia might be a useful determinant of other pleiotropic disorders with a suspected ciliary involvement.


Assuntos
Síndrome de Bardet-Biedl/genética , Mutação , Transtornos do Olfato/genética , Proteínas/genética , Animais , Cílios/ultraestrutura , Humanos , Camundongos , Proteínas Associadas aos Microtúbulos , Microtúbulos/ultraestrutura , Mutagênese Sítio-Dirigida , Mucosa Nasal/metabolismo , Mucosa Nasal/ultraestrutura , Proteínas/metabolismo
5.
Nat Genet ; 36(5): 462-70, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15107855

RESUMO

BBS4 is one of several proteins that cause Bardet-Biedl syndrome (BBS), a multisystemic disorder of genetic and clinical complexity. Here we show that BBS4 localizes to the centriolar satellites of centrosomes and basal bodies of primary cilia, where it functions as an adaptor of the p150(glued) subunit of the dynein transport machinery to recruit PCM1 (pericentriolar material 1 protein) and its associated cargo to the satellites. Silencing of BBS4 induces PCM1 mislocalization and concomitant deanchoring of centrosomal microtubules, arrest in cell division and apoptotic cell death. Expression of two truncated forms of BBS4 that are similar to those found in some individuals with BBS had a similar effect on PCM1 and microtubules. Our findings indicate that defective targeting or anchoring of pericentriolar proteins and microtubule disorganization contribute to the BBS phenotype and provide new insights into possible causes of familial obesity, diabetes and retinal degeneration.


Assuntos
Síndrome de Bardet-Biedl/metabolismo , Ciclo Celular , Centrossomo/metabolismo , Microtúbulos/metabolismo , Proteínas/metabolismo , Animais , Apoptose , Autoantígenos , Síndrome de Bardet-Biedl/patologia , Células COS , Proteínas de Ciclo Celular/metabolismo , Centrossomo/patologia , Chlorocebus aethiops , Dineínas/metabolismo , Inativação Gênica , Células HeLa , Humanos , Marcação In Situ das Extremidades Cortadas , Proteínas Associadas aos Microtúbulos , Fragmentos de Peptídeos/imunologia , Fenótipo , Ligação Proteica , Subunidades Proteicas , Transporte Proteico , Proteínas/antagonistas & inibidores , Proteínas/genética , RNA Interferente Pequeno/farmacologia , Coelhos , Saccharomyces cerevisiae , Técnicas do Sistema de Duplo-Híbrido
6.
Kidney Int ; 81(2): 196-200, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21900877

RESUMO

Congenital abnormalities of the kidney and urinary tract (CAKUT) are the most frequent cause of chronic kidney disease in children, accounting for about half of all cases. Although many forms of CAKUT are likely caused by single-gene defects, mutations in only a few genes have been identified. In order to detect new contributing genes we pooled DNA from 20 individuals to amplify all 313 exons of 30 CAKUT candidate genes by PCR analysis and massively parallel exon resequencing. Mutation carriers were identified by Sanger sequencing. We repeated the analysis with 20 new patients to give a total of 29 with unilateral renal agenesis and 11 with other CAKUT phenotypes. Five heterozygous missense mutations were detected in 2 candidate genes (4 mutations in FRAS1 and 1 in FREM2) not previously implicated in non-syndromic CAKUT in humans. All of these mutations were absent from 96 healthy control individuals and had a PolyPhen score over 1.4, predicting possible damaging effects of the mutation on protein function. Recessive truncating mutations in FRAS1 and FREM2 were known to cause Fraser syndrome in humans and mice; however, a phenotype in heterozygous carriers has not been described. Thus, heterozygous missense mutations in FRAS1 and FREM2 cause non-syndromic CAKUT in humans.


Assuntos
Anormalidades Congênitas/genética , Éxons , Proteínas da Matriz Extracelular/genética , Nefropatias/congênito , Feminino , Heterozigoto , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Rim/anormalidades , Nefropatias/genética , Masculino , Mutação de Sentido Incorreto , Reação em Cadeia da Polimerase , Análise de Sequência de DNA
7.
PLoS Genet ; 5(1): e1000353, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19165332

RESUMO

The identification of recessive disease-causing genes by homozygosity mapping is often restricted by lack of suitable consanguineous families. To overcome these limitations, we apply homozygosity mapping to single affected individuals from outbred populations. In 72 individuals of 54 kindred ascertained worldwide with known homozygous mutations in 13 different recessive disease genes, we performed total genome homozygosity mapping using 250,000 SNP arrays. Likelihood ratio Z-scores (ZLR) were plotted across the genome to detect ZLR peaks that reflect segments of homozygosity by descent, which may harbor the mutated gene. In 93% of cases, the causative gene was positioned within a consistent ZLR peak of homozygosity. The number of peaks reflected the degree of inbreeding. We demonstrate that disease-causing homozygous mutations can be detected in single cases from outbred populations within a single ZLR peak of homozygosity as short as 2 Mb, containing an average of only 16 candidate genes. As many specialty clinics have access to cohorts of individuals from outbred populations, and as our approach will result in smaller genetic candidate regions, the new strategy of homozygosity mapping in single outbred individuals will strongly accelerate the discovery of novel recessive disease genes.


Assuntos
Genes Recessivos , Análise Mutacional de DNA , Reações Falso-Positivas , Saúde da Família , Feminino , Marcadores Genéticos , Genética Populacional , Homozigoto , Humanos , Doenças Renais Císticas/genética , Masculino , Modelos Genéticos , Síndrome Nefrótica/genética , Linhagem , Esteroides/farmacologia
8.
Eur J Hum Genet ; 29(10): 1536-1541, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34285383

RESUMO

We report a patient with profound congenital hypotonia, central hypoventilation, poor visual behaviour with retinal hypopigmentation, and significantly decreased mitochondrial respiratory chain complex I activity in muscle, who died at 7 months of age having made minimal developmental progress. Biallelic predicted truncating P4HTM variants were identified following trio whole-genome sequencing, consistent with a diagnosis of hypotonia, hypoventilation, intellectual disability, dysautonomia, epilepsy and eye abnormalities (HIDEA) syndrome. Very few patients with HIDEA syndrome have been reported previously and mitochondrial abnormalities were observed in three of four previous cases who had a muscle biopsy, suggesting the possibility that HIDEA syndrome represents a primary mitochondrial disorder. P4HTM encodes a transmembrane prolyl 4-hydroxylase with putative targets including hypoxia inducible factors, RNA polymerase II and activating transcription factor 4, which has been implicated in the integrated stress response observed in cell and animal models of mitochondrial disease, and may explain the mitochondrial dysfunction observed in HIDEA syndrome.


Assuntos
Complexo I de Transporte de Elétrons/deficiência , Epilepsia/genética , Anormalidades do Olho/genética , Deficiência Intelectual/genética , Hipotonia Muscular/genética , Prolil Hidroxilases/genética , Complexo I de Transporte de Elétrons/metabolismo , Epilepsia/patologia , Anormalidades do Olho/patologia , Humanos , Lactente , Deficiência Intelectual/patologia , Masculino , Hipotonia Muscular/patologia , Mutação , Síndrome
9.
Nephrol Dial Transplant ; 25(5): 1496-501, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20007758

RESUMO

BACKGROUND: Congenital anomalies of the kidney and urinary tract (CAKUT) account for the majority of end-stage renal disease in children (50%). Previous studies have mapped autosomal dominant loci for CAKUT. We here report a genome-wide search for linkage in a large pedigree of Somalian descent containing eight affected individuals with a non-syndromic form of CAKUT. METHODS: Clinical data and blood samples were obtained from a Somalian family with eight individuals with CAKUT including high-grade vesicoureteral reflux and unilateral renal agenesis. Total genome search for linkage was performed using a 50K SNP Affymetric DNA microarray. As neither parent is affected, the results of the SNP array were analysed under recessive models of inheritance, with and without the assumption of consanguinity. RESULTS: Using the non-consanguineous recessive model, a new gene locus (CAKUT1) for CAKUT was mapped to chromosome 8q24 with a significant maximum parametric Logarithm of the ODDs (LOD) score (LOD(max)) of 4.2. Recombinations were observed in two patients defining a critical genetic interval of 2.5 Mb physical distance flanked by markers SNP_A-1740062 and SNP_A-1653225. CONCLUSION: We have thus identified a new non-syndromic recessive gene locus for CAKUT (CAKUT1) on chromosome 8q24. The identification of the disease-causing gene will provide further insights into the pathogenesis of urinary tract malformations and mechanisms of renal development.


Assuntos
Mapeamento Cromossômico , Cromossomos Humanos Par 8 , Rim/anormalidades , Sistema Urinário/anormalidades , Criança , Pré-Escolar , Feminino , Haplótipos , Humanos , Lactente , Recém-Nascido , Escore Lod , Masculino , Linhagem , Polimorfismo de Nucleotídeo Único
10.
Nature ; 425(6958): 628-33, 2003 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-14520415

RESUMO

Bardet-Biedl syndrome (BBS) is a genetically heterogeneous disorder characterized primarily by retinal dystrophy, obesity, polydactyly, renal malformations and learning disabilities. Although five BBS genes have been cloned, the molecular basis of this syndrome remains elusive. Here we show that BBS is probably caused by a defect at the basal body of ciliated cells. We have cloned a new BBS gene, BBS8, which encodes a protein with a prokaryotic domain, pilF, involved in pilus formation and twitching mobility. In one family, a homozygous null BBS8 mutation leads to BBS with randomization of left-right body axis symmetry, a known defect of the nodal cilium. We have also found that BBS8 localizes specifically to ciliated structures, such as the connecting cilium of the retina and columnar epithelial cells in the lung. In cells, BBS8 localizes to centrosomes and basal bodies and interacts with PCM1, a protein probably involved in ciliogenesis. Finally, we demonstrate that all available Caenorhabditis elegans BBS homologues are expressed exclusively in ciliated neurons, and contain regulatory elements for RFX, a transcription factor that modulates the expression of genes associated with ciliogenesis and intraflagellar transport.


Assuntos
Síndrome de Bardet-Biedl/genética , Síndrome de Bardet-Biedl/patologia , Cílios/patologia , Proteínas/genética , Proteínas/metabolismo , Alelos , Sequência de Aminoácidos , Animais , Síndrome de Bardet-Biedl/metabolismo , Sequência de Bases , Caenorhabditis elegans/citologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Linhagem Celular , Centrossomo/metabolismo , Centrossomo/patologia , Cílios/metabolismo , Proteínas do Citoesqueleto , Feminino , Deleção de Genes , Perfilação da Expressão Gênica , Homozigoto , Humanos , Escore Lod , Masculino , Dados de Sequência Molecular , Mutação/genética , Neurônios/citologia , Neurônios/metabolismo , Neurônios/patologia , Linhagem , Proteínas/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
11.
Nephrol Dial Transplant ; 23(11): 3527-33, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18503012

RESUMO

BACKGROUND: Congenital nephrotic syndrome (CNS) is de- fined as nephrotic syndrome that manifests at birth or within the first 3 months of life. Most patients develop end-stage renal disease (ESRD) within 2 to 3 years of life. CNS of the Finnish-type (CNF) features a rather specific renal histology and is caused by recessive mutations in the NPHS1 gene encoding nephrin, a major structural protein of the glomerular slit-diaphragm. So far, more than 80 different mutations of NPHS1 causing CNF have been published. METHODS: Here, we performed mutation analysis of NPHS1 by exon sequencing in a worldwide cohort of 32 children with CNS from 29 different families. RESULTS: Sixteen of the 29 families (55%) were found to have two disease-causing alleles in NPHS1. Two additional patients had a single heterozygous mutation in NPHS1. Thirteen of a total of 20 different mutations detected were novel (65%). These were five missense mutations, one nonsense mutation, three deletions, one insertion and three splice-site mutations. CONCLUSION: Our data expand the spectrum of known NPHS1 mutations by >15% in a worldwide cohort. Surprisingly, two patients with disease-causing mutations showed a relatively mild phenotype, as one patient had a partial remission with steroid treatment and one patient had normal renal function 1 year after the onset of disease. The increased number of known mutations will facilitate future studies into genotype/phenotype correlations.


Assuntos
Proteínas de Membrana/genética , Mutação/genética , Síndrome Nefrótica/congênito , Síndrome Nefrótica/genética , Códon sem Sentido/genética , Estudos de Coortes , Feminino , Deleção de Genes , Genótipo , Humanos , Lactente , Recém-Nascido , Masculino , Mutagênese Insercional/genética , Mutação de Sentido Incorreto/genética , Fenótipo
12.
Nephrol Dial Transplant ; 23(4): 1291-7, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18065803

RESUMO

BACKGROUND AND OBJECTIVES: Diffuse mesangial sclerosis (DMS) is a histologically distinct variant of nephrotic syndrome (NS) that is characterized by early onset and by progression to end-stage kidney disease (ESKD). Besides syndromic DMS, isolated (non-syndromic) DMS (IDMS) has been described. The etiology and pathogenesis of DMS is not understood. We recently identified by positional cloning recessive mutations in the gene PLCE1/NPHS3 as a novel cause of IDMS. We demonstrated a role of PLCE1 in glomerulogenesis. Mutations in two other genes WT1 and LAMB2 may also cause IDMS. We therefore determine in this study the relative frequency of mutations in PLCE1, WT1 or LAMB2 as the cause of IDMS in a worldwide cohort. METHODS: We identified 40 children from 35 families with IDMS from a worldwide cohort of 1368 children with NS. All the subjects were analyzed for mutations in all exons of PLCE1 by multiplex capillary heteroduplex analysis and direct sequencing, by direct sequencing of exons 8 and 9 of WT1, and all the exons of LAMB2. RESULTS: The median (range) age at onset of NS was 11 (1-72) months. We detected truncating mutations in PLCE1 in 10/35 (28.6%) families and WT1 mutations in 3/35 (8.5%) families. We found no mutations in LAMB2. CONCLUSIONS: PLCE1 mutation is the most common cause of IDMS in this cohort. We previously reported that one child with truncating mutation in PLCE1 responded to cyclosporine therapy. If this observation is confirmed in a larger study, mutations in PLCE1 may serve as a biomarker for selecting patients with IDMS who may benefit from treatment.


Assuntos
Mesângio Glomerular/patologia , Mutação , Nefroesclerose/genética , Fosfoinositídeo Fosfolipase C/genética , Biópsia , Pré-Escolar , DNA , Análise Mutacional de DNA , Éxons , Feminino , Predisposição Genética para Doença , Genótipo , Humanos , Lactente , Laminina/genética , Laminina/metabolismo , Masculino , Nefroesclerose/metabolismo , Nefroesclerose/patologia , Fosfoinositídeo Fosfolipase C/metabolismo , Reação em Cadeia da Polimerase , Prognóstico , Índice de Gravidade de Doença , Proteínas WT1/genética , Proteínas WT1/metabolismo
13.
Sci Rep ; 6: 34764, 2016 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-27708425

RESUMO

Bardet-Biedl syndrome (BBS) is an autosomal recessive disorder that is both genetically and clinically heterogeneous. To date 19 genes have been associated with BBS, which encode proteins active at the primary cilium, an antenna-like organelle that acts as the cell's signaling hub. In the current study, a combination of mutation screening, targeted sequencing of ciliopathy genes associated with BBS, and whole-exome sequencing was used for the genetic characterization of five families including four with classic BBS symptoms and one BBS-like syndrome. This resulted in the identification of novel mutations in BBS genes ARL6 and BBS5, and recurrent mutations in BBS9 and CEP164. In the case of CEP164, this is the first report of two siblings with a BBS-like syndrome with mutations in this gene. Mutations in this gene were previously associated with nephronophthisis 15, thus the current results expand the CEP164-associated phenotypic spectrum. The clinical and genetic spectrum of BBS and BBS-like phenotypes is not fully defined in Pakistan. Therefore, genetic studies are needed to gain insights into genotype-phenotype correlations, which will in turn improve the clinician's ability to make an early and accurate diagnosis, and facilitate genetic counseling, leading to directly benefiting families with affected individuals.


Assuntos
Fatores de Ribosilação do ADP/genética , Síndrome de Bardet-Biedl/genética , Estudos de Associação Genética/métodos , Proteínas dos Microtúbulos/genética , Proteínas de Neoplasias/genética , Proteínas/genética , Adolescente , Adulto , Proteínas do Citoesqueleto , Análise Mutacional de DNA/métodos , Feminino , Predisposição Genética para Doença , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Paquistão , Linhagem , Proteínas de Ligação a Fosfato , Sequenciamento do Exoma/métodos , Adulto Jovem
14.
Hum Mutat ; 22(2): 151-7, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12872256

RESUMO

Bardet-Biedl syndrome (BBS) is a heterogeneous disease; to date seven loci have been mapped and five identified (BBS1, BBS2, BBS4, BBS6, and BBS7). Inheritance in some families is complex with multiallelic participation making linkage analysis difficult. Previous mutation screens have been carried out by direct sequencing but with an increasing number of patients to be screened for five relatively large genes, a more rapid and cost-effective mutation assay for BBS was required. We have adapted the technique of heteroduplex analysis for use on the MegaBACE 1000, a capillary-based DNA fragment analyser, to improve the resolution and sensitivity of the system. Twelve known alterations (insertions, deletions, missenses, and SNPs) in BBS1, BBS2, BBS4, and BBS6 were used to test the sensitivity of the assay and subsequently used to screen new patients for mutations. We achieved a 100% detection rate while dramatically increasing the sample throughput by virtue of multiplexing up to six PCR products in each capillary. In addition, four novel variants were identified: two in BBS2 [c.522T>A (p.D174E) and c.805-20A>G] and two in BBS4 [c.332+27_28insA and c.1414A>G (p.M472V)]. Compared with sequencing and alternative screening methods, multiplex capillary heteroduplex analysis (MCHA) is extremely cost effective. Hum Mutat 22:151-157, 2003.


Assuntos
Análise Mutacional de DNA/métodos , Testes Genéticos/métodos , Síndrome de Bardet-Biedl/diagnóstico , Síndrome de Bardet-Biedl/genética , DNA/genética , Éxons/genética , Feminino , Mutação da Fase de Leitura/genética , Predisposição Genética para Doença/genética , Humanos , Íntrons/genética , Proteínas Associadas aos Microtúbulos , Mutação de Sentido Incorreto/genética , Polimorfismo de Nucleotídeo Único/genética , Proteínas/genética , Sensibilidade e Especificidade , Deleção de Sequência/genética
16.
Eur J Hum Genet ; 19(4): 485-8, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21157496

RESUMO

Bardet-Biedl syndrome (BBS; OMIM no. 209 900) and Alström syndrome (ALMS; OMIM no. 203 800) are rare, multisystem genetic disorders showing both a highly variable phenotype and considerable phenotypic overlap; they are included in the emerging group of diseases called ciliopathies. The genetic heterogeneity of BBS with 14 causal genes described to date, serves to further complicate mutational analysis. The development of the BBS-ALMS array which detects known mutations in these genes has allowed us to detect at least one mutation in 40.5% of BBS families and in 26.7% of ALMS families validating this as an efficient and cost-effective first pass screening modality. Furthermore, using this method, we found two BBS families segregating three BBS alleles further supporting oligogenicity or modifier roles for additional mutations. We did not observe more than two mutations in any ALMS family.


Assuntos
Síndrome de Alstrom/genética , Síndrome de Bardet-Biedl/genética , Testes Genéticos/métodos , Mutação/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Alelos , Análise Mutacional de DNA , Primers do DNA/genética , Haplótipos/genética , Humanos , Polimorfismo de Nucleotídeo Único
17.
J Clin Invest ; 120(3): 791-802, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20179356

RESUMO

The autosomal recessive kidney disease nephronophthisis (NPHP) constitutes the most frequent genetic cause of terminal renal failure in the first 3 decades of life. Ten causative genes (NPHP1-NPHP9 and NPHP11), whose products localize to the primary cilia-centrosome complex, support the unifying concept that cystic kidney diseases are "ciliopathies". Using genome-wide homozygosity mapping, we report here what we believe to be a new locus (NPHP-like 1 [NPHPL1]) for an NPHP-like nephropathy. In 2 families with an NPHP-like phenotype, we detected homozygous frameshift and splice-site mutations, respectively, in the X-prolyl aminopeptidase 3 (XPNPEP3) gene. In contrast to all known NPHP proteins, XPNPEP3 localizes to mitochondria of renal cells. However, in vivo analyses also revealed a likely cilia-related function; suppression of zebrafish xpnpep3 phenocopied the developmental phenotypes of ciliopathy morphants, and this effect was rescued by human XPNPEP3 that was devoid of a mitochondrial localization signal. Consistent with a role for XPNPEP3 in ciliary function, several ciliary cystogenic proteins were found to be XPNPEP3 substrates, for which resistance to N-terminal proline cleavage resulted in attenuated protein function in vivo in zebrafish. Our data highlight an emerging link between mitochondria and ciliary dysfunction, and suggest that further understanding the enzymatic activity and substrates of XPNPEP3 will illuminate novel cystogenic pathways.


Assuntos
Aminopeptidases/metabolismo , Doenças Genéticas Inatas/enzimologia , Rim/enzimologia , Mitocôndrias/enzimologia , Proteínas Mitocondriais/metabolismo , Insuficiência Renal/enzimologia , Aminopeptidases/genética , Animais , Centrossomo/enzimologia , Centrossomo/patologia , Mapeamento Cromossômico/métodos , Cílios/enzimologia , Cílios/genética , Cílios/patologia , Família , Feminino , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/patologia , Estudo de Associação Genômica Ampla/métodos , Humanos , Rim/patologia , Masculino , Mitocôndrias/patologia , Proteínas Mitocondriais/genética , Ratos , Ratos Sprague-Dawley , Insuficiência Renal/genética , Insuficiência Renal/patologia , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
18.
Pediatr Nephrol ; 24(1): 55-60, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18846391

RESUMO

Uromodulin (UMOD) mutations were described in patients with medullary cystic kidney disease (MCKD2), familial juvenile hyperuricemic nephropathy (FJHN), and glomerulocystic kidney disease (GCKD). UMOD transcription is activated by the transcription factor HNF1B. Mutations in HNF1B cause a phenotype similar to FJHN/GCKD but also congenital anomalies of the kidney and the urinary tract (CAKUT). Moreover, we recently detected UMOD mutations in two patients with CAKUT. As HNF1B and UMOD act in the same pathway and cause similar phenotypes, we here examined whether UMOD mutations would be found in patients with CAKUT. Mutation analysis of UMOD was performed in 96 individuals with CAKUT by direct sequencing of exons 4 and 5 and by heteroduplex analysis following CEL I digestion assay of exons 3 and 6-12. Mean patient age was 11.4 years, and in 36.4% of patients, family history was positive for CAKUT. In the CEL I assay, 12 aberrant bands were detected in 103 of 960 polymerase chain reaction (PCR) products and were sequenced. Six previously known and seven new single nucleotide polymorphisms (SNPs) were detected. As no UMOD mutations were identified in these 96 patients with CAKUT, UMOD mutations do not seem to be a significant cause of CAKUT in this cohort.


Assuntos
Mucoproteínas/genética , Mutação , Sistema Urinário/anormalidades , Doenças Urológicas/congênito , Doenças Urológicas/genética , Adolescente , Adulto , Criança , Pré-Escolar , Análise Mutacional de DNA , Feminino , Predisposição Genética para Doença , Humanos , Lactente , Masculino , Uromodulina , Adulto Jovem
19.
Am J Physiol Renal Physiol ; 294(1): F93-9, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17942568

RESUMO

Steroid-resistant nephrotic syndrome is a malfunction of the kidney glomerular filter that leads to proteinuria, hypoalbuminemia, edema, and renal failure. Recently, we identified recessive mutations in the phospholipase C epsilon 1 gene (PLCE1) as a new cause of early-onset nephrotic syndrome and demonstrated interaction of PLCepsilon1 with IQGAP1. To further elucidate the mechanism by which PLCE1 mutations cause nephrotic syndrome, we sought to identify new protein interaction partners of PLCepsilon1. We utilized information from the genetic interaction network of C. elegans. It relates the PLCE1 ortholog (plc-1) to the C. elegans ortholog (lin-45) of human BRAF (v-raf murine sarcoma viral oncogene homolog B1). We hypothesized that this may indicate a functional protein-protein interaction. Using GST pull down of HEK293T cell lysates in vitro and coimmunoprecipation of mouse kidney lysates in vivo, we show that BRAF interacts with PLCepsilon1. By immunohistochemistry in rat kidney, we demonstrate that both proteins are coexpressed and colocalize in developing and mature glomerular podocytes, reporting for the first time the expression of BRAF in the glomerular podocyte.


Assuntos
Mutação/genética , Síndrome Nefrótica/metabolismo , Fosfoinositídeo Fosfolipase C/genética , Fosfoinositídeo Fosfolipase C/metabolismo , Proteínas Proto-Oncogênicas B-raf/metabolismo , Animais , Células COS , Caenorhabditis elegans , Linhagem Celular , Chlorocebus aethiops , Humanos , Glomérulos Renais/metabolismo , Glomérulos Renais/patologia , Síndrome Nefrótica/patologia , Podócitos/metabolismo , Podócitos/patologia , Domínios e Motivos de Interação entre Proteínas , Ratos
20.
Am J Hum Genet ; 80(4): 800-4, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17357085

RESUMO

Branchio-oto-renal syndrome (BOR) is an autosomal dominant developmental disorder characterized by the association of branchial arch defects, hearing loss, and renal anomalies. Mutations in EYA1 are known to cause BOR. More recently, mutations in SIX1, which interacts with EYA1, were identified as an additional cause of BOR. A second member of the SIX family of proteins, unc-39 (SIX5), has also been reported to directly interact with eya-1 in Caenorhabditis elegans. We hypothesized that this interaction would be conserved in humans and that interactors of EYA1 represent good candidate genes for BOR. We therefore screened a cohort of 95 patients with BOR for mutations in SIX5. Four different heterozygous missense mutations were identified in five individuals. Functional analyses of these mutations demonstrated that two mutations affect EYA1-SIX5 binding and the ability of SIX5 or the EYA1-SIX5 complex to activate gene transcription. We thereby identified heterozygous mutations in SIX5 as a novel cause of BOR.


Assuntos
Síndrome Brânquio-Otorrenal/genética , Predisposição Genética para Doença , Proteínas de Homeodomínio/genética , Mutação de Sentido Incorreto/genética , Fatores de Transcrição/genética , Sequência de Bases , Testes Genéticos , Proteínas de Homeodomínio/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Luciferases , Dados de Sequência Molecular , Proteínas Nucleares/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA