Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 258: 119433, 2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38889838

RESUMO

The O2 content of the global ocean has been declining progressively over the past decades, mainly because of human activities and global warming. Despite this situation, the responses of macrobenthos under hypoxic conditions remain poorly understood. In this study, we conducted a long-term observation (2015-2022) to investigate the intricate impact of summer hypoxia on macrobenthic communities in a semi-enclosed bay of the North Yellow Sea. Comparative analyses revealed higher macrobenthos abundance (1956.8 ± 1507.5 ind./m2 vs. 871.8 ± 636.9 ind./m2) and biomass (8.2 ± 4.1 g/m2 vs. 5.6 ± 3.2 g/m2) at hypoxic sites compared to normoxic sites during hypoxic years. Notably, polychaete species demonstrated remarkable adaptability, dominating hypoxic sites, and shaping community structure. The decline in biodiversity underscored the vulnerability and diminished resilience of macrobenthic communities to hypoxic stressors. Stable isotope analysis provided valuable insights into food web structures. The average trophic level of macrobenthos measured 2.84 ± 0.70 at hypoxic sites, contrasting with the higher value of 3.14 ± 0.74 observed at normoxic sites, indicating the absence of predators at high trophic levels under hypoxic conditions. Moreover, trophic interactions were significantly altered, resulting in a simplified and more vulnerable macrobenthic trophic structure. The findings underscored the importance of comprehensive research to understand the complex responses of macrobenthic communities to hypoxia, thereby informing future conservation efforts in impacted ecosystems.

2.
Bull Environ Contam Toxicol ; 107(4): 665-670, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32424435

RESUMO

Microplastics are recognized as an emerging global issue in marine environments. In this study, microplastic pollution in subtidal sediments from nine typical stations in the Bohai Sea was investigated. The mean concentration was 458.6 ± 150.0 items/kg of dry weight, varying from 280.0 to 773.4 items/kg. All of the microplastics were categorized according to shape, color and size. Among these microplastics, fiber (77.1%), white/blue/black (85.0%) and small microplastics (< 1500 µm) (82.9%) were the most abundant types. Seven polymer types were identified and were, in decreasing order of abundance, rayon > PE > PS > PP > PET > ABS > PA. The microplastics abundance was of the same order of magnitude as that of other similar areas. The microplastic characteristics suggest that tourism, maritime activities and sewage discharge are possible sources. Our results provide useful information for performing an environmental risk assessment of microplastic pollution in this area.


Assuntos
Microplásticos , Poluentes Químicos da Água , Monitoramento Ambiental , Sedimentos Geológicos , Plásticos , Poluentes Químicos da Água/análise
3.
Sci Total Environ ; 913: 169739, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38163610

RESUMO

Microplastics (MPs) pollution in the marine environment has become a global problem. In this study, a number of 21 mollusk species (n = 2006) with different feeding habits were collected from 11 sites along the Bohai Sea for MPs uptake analysis. The MPs in mollusk samples were isolated and identified by micro-Fourier Transform Infrared Spectroscopy (µ-FTIR), and an assessment of the health risks of MPs ingested by mollusk consumption is also conducted. Approximately 91.9 % of the individuals among all the collected species inhaled MPs, and there was an average abundance of 3.30 ± 2.04 items·individual-1 or 1.04 ± 0.74 items·g-1 of wet weight. The shape of MPs was mainly fiber, and a total number of 8 polymers were detected, of which rayon had the highest detection rate (58.3 %). The highest abundance, uptake rate and polymer composition of MPs was observed in creeping types, suggesting that they might ingest these MPs from their food. The gastropod Siphonalia subdilatata contains the highest levels of MPs, which may increase the risk of human exposure if consumed whole without removing the digestive gland. The polymer risk level of MPs in these mollusks was Level III (H = 299), presenting harmful MPs such as polyvinyl chloride. In terms of human exposure risk, the average risk of human exposure to MPs through consumption of Bohai mollusks is estimated to be 3399 items·(capita·year)-1 (424-9349 items·(capita·year)-1). Overall, this study provides a basis for the ecological and health Risk assessment of MPs in mollusks collected from the coastline of China.


Assuntos
Gastrópodes , Poluentes Químicos da Água , Humanos , Animais , Microplásticos/análise , Plásticos/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Moluscos , Medição de Risco
4.
Mar Pollut Bull ; 193: 115153, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37327720

RESUMO

Microplastics (MPs) pollution and salinity variation are two environmental stressors, but their combined effects on marine mollusks are rarely known. Oysters (Crassostrea gigas) were exposed to 1 × 104 particles L-1 spherical polystyrene MPs (PS-MPs) of different sizes (small polystyrene MPs (SPS-MPs): 6 µm, large polystyrene MPs (LPS-MPs): 50-60 µm) under three salinity levels (21, 26, and 31 psu) for 14 days. Results demonstrated that low salinity reduced PS-MPs uptake in oysters. Antagonistic interactions between PS-MPs and low salinity mainly occurred, and partial synergistic effects were mainly induced by SPS-MPs. SPS-MPs induced higher lipid peroxidation (LPO) levels than LPS-MPs. In digestive glands, low salinity decreased LPO levels and glycometabolism-related gene expression, which was related to salinity levels. Low salinity instead of MPs mainly affected metabolomics profiles of gills through energy metabolism and osmotic adjustment pathway. In conclusion, oysters can adapt to combined stressors through energy and antioxidative regulation.


Assuntos
Crassostrea , Poluentes Químicos da Água , Animais , Microplásticos , Poliestirenos/metabolismo , Plásticos/metabolismo , Salinidade , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Estresse Oxidativo , Metabolismo Energético , Poluentes Químicos da Água/metabolismo
5.
Ecol Evol ; 13(11): e10669, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37915801

RESUMO

Frequently occurring jellyfish blooms have severe impacts on the socioeconomics of coastal areas, which stress the importance of early detection and assessments of blooming jellyfish taxa. Environmental DNA (eDNA) techniques (quantitative PCR and eDNA metabarcoding) have the advantage of high sensitivity and are an emerging powerful tool for investigations of target species. However, a comprehensive analysis of the biodiversity and biomass of jellyfish taxa in the target area by combining the two eDNA techniques is still lacking. Here, we developed eDNA metabarcoding and quantitative PCR for the detection and assessment of jellyfish taxa in the temperate Yantai Sishili Bay (YSB) and estimated the spatial distribution of Aurelia coerulea. Species-specific quantitative PCR assays targeting the mitochondrial cytochrome c oxidase subunit I gene of A. coerulea were developed. Additionally, eDNA metabarcoding based on the mitochondrial 16S rDNA sequences identified six jellyfish species in YSB. Moreover, our results indicate that A. coerulea aggregations were more likely to occur in the inner part of the bay than in the outer part, and they gathered in the bottom layer of seawater rather than in the surface layer. Our results demonstrate the potential of two eDNA techniques in jellyfish biomass investigation and jellyfish taxa detection. These eDNA techniques may contribute to the discovery of jellyfish aggregation so as to achieve early warning of large-scale jellyfish blooms in coastal areas.

6.
Chemosphere ; 344: 140420, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37838033

RESUMO

Microorganisms can attach on the surface of microplastics (MPs) through biological fouling process to form a diverse community called the "plastisphere", which has attracted extensive attention. Although the microbial structure and composition of biofilm have been studied, the knowledge of its microbial function and ecological risk is still limited. In this study, we investigated how the surface properties of MPs affect the biofilm communities and metabolic features under different environmental conditions, and explored the biofilm enrichment of antibiotic resistance genes (ARGs). The results showed that the incubation time, habitat and MPs aging state significantly influenced the structure and composition of biofilm microbial communities, and a small amount of pathogens have been found in the MPs-attached biofilm. The microbial carbon utilization capacity of the biofilm in different incubation habitats varies greatly with highest metabolism capacity appear in the river. The utilization efficiency of different carbon sources is polymer > carbohydrate > amino acid > carboxylic acids > amine/amide, which indicates that the biofilm communities have selectivity between different types of carbon sources. More importantly, ARGs were detected in all the MPs samples and showed a trend of estuary > river > marine. The aged MPs can accumulate more ARGs than the virgin items. In general, MPs in the aquatic environment may become a carrier for pathogens and ARGs to spread to other environment, which may enhance their potential risks to the ecosystem and human health.


Assuntos
Microbiota , Plásticos , Humanos , Idoso , Antibacterianos/farmacologia , Microplásticos , Genes Bacterianos , Resistência Microbiana a Medicamentos/genética , Carbono
7.
Mar Pollut Bull ; 175: 113171, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34844749

RESUMO

Analysis of the common and most influential natural and anthropogenic activities on the spatiotemporal variation in nutrients at a multiannual scale is important. Eleven cruises from 2015 to 2017 were carried out to better elucidate the seasonal and spatial variations in nutrients, as well as the impact factors on dissolved inorganic nitrogen (DIN), phosphorus (DIP) and silicate (DSi). Both nutrient concentrations and forms showed similar and significant seasonal variations over the 3 years, and were closely related to the biomass and species of phytoplankton. Terrestrial inputs had significant effects on the spatial distribution of nutrients throughout the year, especially in the surface water, which showed DIN > DIP>DSi. In summer, shellfish aquaculture and hypoxia jointly affected the spatial distribution of nutrients. The bottom water nutrient concentrations in the aquaculture area were 1.1-2.3 times higher than those outside of the aquaculture area. Seasonal hypoxia can increase the release of DSi and NH4+ from the sediment to the water. In summary, anthropogenic activities and physical conditions jointly influenced the nutrient distributions.


Assuntos
Efeitos Antropogênicos , Monitoramento Ambiental , China , Nitrogênio/análise , Nutrientes/análise , Fósforo/análise , Estações do Ano , Água do Mar
8.
Chemosphere ; 263: 127962, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32841876

RESUMO

Microplastic (MP) pollution has become an emerging global concern in marine environments, but research on the uptake of MPs by commercial marine fish is relatively sparse. In this study, 29 commercial fish species (n = 584) with different feeding habits and trophic levels were collected from 8 sites along the Bohai Sea for MP uptake analysis. Approximately 85.4% of the total fish among all species ingested MPs, and there was an average abundance of 2.14 items/individual or 0.043 items/g of wet weight. Compared with other studies, MP pollution in fishes from the Bohai Sea was relatively moderate. The MPs were predominantly fibrous in shape and were cellophane, polyethylene terephthalate (PET) and polypropylene (PP) in polymer composition. The highest abundance and polymer composition of MPs was observed in benthivores, suggesting that they might ingest these MPs from their food. The small fish Konosirus punctatus, which had a high level of MPs, may increase the risk of human exposure to the MPs when it is dried and consumed. Moreover, the spatial variation of MPs was determined in terms of abundance, shape composition, and major polymer types, but there was no marked relationship between MP abundance and the trophic levels of fish. Overall, this study provides a basis for the ecological risk assessment of MPs in fish and for a health risk assessment for human beings.


Assuntos
Monitoramento Ambiental , Peixes/metabolismo , Microplásticos/metabolismo , Poluentes Químicos da Água/metabolismo , Animais , China , Poluição Ambiental/análise , Humanos , Plásticos/análise
9.
Mar Pollut Bull ; 160: 111609, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32890961

RESUMO

Red tide has always been an environmental issue with global concern. A Noctiluca scintillans red tide and a Mesodinium red tide occurred successively in Yantai nearshore, China, where is usually oligotrophic, in October 2019. Currents, phytoplankton community composition and nutrients were analyzed to access the driving factors of the red tides. The maximum N. scintillans and Mesodiniium abundance reached 124.92 ± 236.84 × 103 cells/L and 1157.52 ± 1294.16 × 103 cells/L respectively. The fast growth of N. scintillans was due to increasing abundance of phytoplankton. The currents were crucial to the assembly and dispersal of red tides. The red tides significantly redistributed the nutrients in the red tide patches and regulated the dominant species in phytoplankton community. Our study illuminates the influence of physical-biochemical coupling processes on red tides, and suggests that ocean dynamics such as currents and tidal factors deserve more attention when considering the ecosystem health problems of coastal zones.


Assuntos
Dinoflagellida , Proliferação Nociva de Algas , China , Ecossistema , Monitoramento Ambiental , Fitoplâncton
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA