RESUMO
Ridge-furrow with plastic mulching (RFPM) is a widely used agricultural practice in rain-fed farmlands. However, the impact of microbial related metabolism on soil organic carbon (SOC) is not fully understood. Amino sugar analysis, high-throughput sequencing, and high-throughput qPCR approaches are combined to investigate this topic, based on a long-term experiment. Treatments include flat planting without mulching (FP), ridge-furrow without mulching (RF), and RFPM. RFPM significantly decreases rhizoplane SOC contents, while bulk SOC contents change insignificantly across treatments. In terms of microbial metabolic pathways, RFPM decreases indicators of the in vivo metabolic pathway, whereas those of the ex vivo pathway are increased. In terms of microbial community features, core taxa module #1 is dominated by Sphingomonadaceae. These are putative high yield (Y) strategists, according to the microbial life-history strategy framework. They are closely related to the in vivo pathway and are most predictive for SOC; their abundance is highest under FP and lowest under RFPM. Core taxa module #2 is dominated by Chitinophagaceae, putative resource acquisition (A) strategists, that are closely related to the ex vivo pathway. Their abundance in the rhizoplane is highest under RFPM and lowest under FP. The RFPM-induced decline in SOC occurs simultaneously with the abundance of A-strategists with in vivo pathway but not the Y-strategists with ex vivo pathway. Overall, the result of this study shows a trade-off. In RFPM practice, the ex vivo microbial pathway is enhanced along with the abundance of A-strategists. This is not the case for the in vivo pathway and associated abundance of Y-strategists, which are closely associated with SOC. Our findings underlined the impact of rhizoplane microbial metabolic pathways on SOC status is key to agricultural practices in drylands such as RFPM, and advanced our understanding of how microbes affect the carbon cycling in dryland farming.
Assuntos
Sequestro de Carbono , Solo , Plásticos , Carbono , Agricultura , ChinaRESUMO
Introduction: The impact of plastics on terrestrial ecosystems is receiving increasing attention. Although of great importance to soil biogeochemical processes, how plastics influence soil microbes have yet to be systematically studied. The primary objectives of this study are to evaluate whether plastics lead to divergent responses of soil microbial community parameters, and explore the potential driving factors. Methods: We performed a meta-analysis of 710 paired observations from 48 published articles to quantify the impact of plastic on the diversity, biomass, and functionality of soil microbial communities. Results and discussion: This study indicated that plastics accelerated soil organic carbon loss (effect size = -0.05, p = 0.004) and increased microbial functionality (effect size = 0.04, p = 0.003), but also reduced microbial biomass (effect size = -0.07, p < 0.001) and the stability of co-occurrence networks. Polyethylene significantly reduced microbial richness (effect size = -0.07, p < 0.001) while polypropylene significantly increased it (effect size = 0.17, p < 0.001). Degradable plastics always had an insignificant effect on the microbial community. The effect of the plastic amount on microbial functionality followed the "hormetic dose-response" model, the infection point was about 40 g/kg. Approximately 3564.78 µm was the size of the plastic at which the response of microbial functionality changed from positive to negative. Changes in soil pH, soil organic carbon, and total nitrogen were significantly positively correlated with soil microbial functionality, biomass, and richness (R2 = 0.04-0.73, p < 0.05). The changes in microbial diversity were decoupled from microbial community structure and functionality. We emphasize the negative impacts of plastics on soil microbial communities such as microbial abundance, essential to reducing the risk of ecological surprise in terrestrial ecosystems. Our comprehensive assessment of plastics on soil microbial community parameters deepens the understanding of environmental impacts and ecological risks from this emerging pollution.