Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Fertil Steril ; 115(2): 463-473, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33579525

RESUMO

OBJECTIVE: To investigate the expression of aquaporin 7 (AQP7) and aquaporin 9 (AQP9) in the granulosa cells of patients with polycystic ovary syndrome (PCOS) and healthy women and detect their localization in oocytes at the germinal vesicle (GV), metaphase I (MI), MII, embryo, and blastocyst stages and the in vitro response to insulin stimulation. DESIGN: Randomized, assessor-blinded study. SETTING: Reproductive medical center. PATIENT(S): A total of 40 women (aged 20-38 years) comprising 29 cases of primary infertility and 11 cases of secondary infertility, of whom 17 had an initial diagnosis of PCOS and three received a PCOS diagnosis after an infertility examination. INTERVENTION(S): Controlling different concentrations of insulin and different treatment times in cultures of normal human granulosa cells in vitro. MAIN OUTCOME MEASURE(S): Expression of AQP7 and AQP9 genes and proteins in granulosa cells detected by real-time quantitative polymerase chain reaction, and localization in oocytes at the GV, MI, MII, embryo, and blastocyst stages by Western blot, immunohistochemical, and immunofluorescence assays, and concentrations of insulin in follicular fluid by enzyme-linked immunosorbent assay. RESULT(S): The expression levels of the AQP7 mRNA and protein in the granulosa cells of patients with PCOS were higher than found in healthy controls. We found AQP7 protein expressed in human oocytes at GV, MI, MII, embryo, and blastocyst stages; it was mainly located in the nucleoplasm. In the PCOS group, the expression level of AQP9 mRNA and protein in granulosa cells was lower, and AQP9 protein was expressed in oocytes at the GV, MI, MII, embryo, and blastocyst stages; it was localized on the nuclear membrane. Compared with healthy women, the insulin expression in patients with PCOS was higher. In cultures of normal human granulosa cells in vitro, the expression of AQP7 and AQP9 mRNA and protein decreased with the increase in insulin concentration; expression statistically significantly decreased when the insulin concentration was 100 nmol/L, and after 6 to 24 hours of exposure the lowest expression levels were found at 12 hours. CONCLUSION(S): The different localization and expression of AQP7 and AQP9 between the two groups suggests that they might be involved in oocyte maturation and embryonic development through different regulatory pathways. The expression levels of AQP7 and AQP9 were negatively correlated with insulin regulation, suggesting that insulin might affect the maturation of PCOS follicles by changing AQP7 and AQP9 expression.


Assuntos
Aquaporinas/biossíntese , Regulação da Expressão Gênica no Desenvolvimento , Células da Granulosa/metabolismo , Insulina/metabolismo , Oócitos/metabolismo , Síndrome do Ovário Policístico/metabolismo , Adulto , Aquaporinas/genética , Feminino , Humanos , Infertilidade Feminina/epidemiologia , Infertilidade Feminina/genética , Infertilidade Feminina/metabolismo , Insulina/genética , Síndrome do Ovário Policístico/epidemiologia , Síndrome do Ovário Policístico/genética , Método Simples-Cego , Adulto Jovem
2.
Cell Death Dis ; 9(2): 16, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29339719

RESUMO

Pre-eclampsia is a pregnancy-related disease that may cause maternal, neonatal and fetal morbidity and mortality and exists in 3-5% of pregnancies worldwide. The discovery of dysregulated microRNAs and their roles in placental development has provided a new avenue for elucidating the mechanism involved in this pregnancy-specific disorder. Here, the roles of human miR-181a-5p, a microRNA that is increased in both the plasma and placenta of severe pre-eclamptic patients, in invasion and migration of trophoblasts were investigated. Ectopic-expression of miR-181a-5p impaired the invasion and migration of HTR-8/SVneo cells, whereas miR-181a-5p inhibition had the opposite effects. IGF2BP2, which harbors a highly conserved miR-181a-5p-binding site within its 3'-UTR, was identified to be directly inhibited by miR-181a-5p. Moreover, siRNAs targeting IGF2BP2 imitated the effects of overexpressed miR-181a-5p on HTR-8/SVneo cell invasion and migration, whereas restoring IGF2BP2 expression by overexpressing a plasmid encoding IGF2BP2 partially reversed the studied inhibitory functions of miR-181a-5p. Thus, we demonstrated here that miR-181a-5p suppresses the invasion and migration of cytotrophoblasts, and its inhibitory effects were at least partially mediated by the suppression of IGF2BP2 expression, thus shedding new light on the roles of miR-181a-5p in the pathogenesis of severe pre-eclampsia.


Assuntos
Movimento Celular , MicroRNAs/metabolismo , Proteínas de Ligação a RNA/metabolismo , Trofoblastos/metabolismo , Trofoblastos/patologia , Regiões 3' não Traduzidas/genética , Adulto , Sequência de Bases , Sítios de Ligação , Linhagem Celular , Movimento Celular/genética , Sequência Conservada , Feminino , Humanos , MicroRNAs/genética , Pré-Eclâmpsia/genética , Pré-Eclâmpsia/patologia , Gravidez , Ligação Proteica , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA/genética , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA