Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Plant Mol Biol ; 114(3): 52, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38696020

RESUMO

Salt stress is one of the major factors limiting plant growth and productivity. Many studies have shown that serine hydroxymethyltransferase (SHMT) gene play an important role in growth, development and stress response in plants. However, to date, there have been few studies on whether SHMT3 can enhance salt tolerance in plants. Therefore, the effects of overexpression or silencing of CsSHMT3 gene on cucumber seedling growth under salt stress were investigated in this study. The results showed that overexpression of CsSHMT3 gene in cucumber seedlings resulted in a significant increase in chlorophyll content, photosynthetic rate and proline (Pro) content, and antioxidant enzyme activity under salt stress condition; whereas the content of malondialdehyde (MDA), superoxide anion (H2O2), hydrogen peroxide (O2·-) and relative conductivity were significantly decreased when CsSHMT3 gene was overexpressed. However, the content of chlorophyll and Pro, photosynthetic rate, and antioxidant enzyme activity of the silenced CsSHMT3 gene lines under salt stress were significantly reduced, while MDA, H2O2, O2·- content and relative conductivity showed higher level in the silenced CsSHMT3 gene lines. It was further found that the expression of stress-related genes SOD, CAT, SOS1, SOS2, NHX, and HKT was significantly up-regulated by overexpressing CsSHMT3 gene in cucumber seedlings; while stress-related gene expression showed significant decrease in silenced CsSHMT3 gene seedlings under salt stress. This suggests that overexpression of CsSHMT3 gene increased the salt tolerance of cucumber seedlings, while silencing of CsSHMT3 gene decreased the salt tolerance. In conclusion, CsSHMT3 gene might positively regulate salt stress tolerance in cucumber and be involved in regulating antioxidant activity, osmotic adjustment, and photosynthesis under salt stress. KEY MESSAGE: CsSHMT3 gene may positively regulate the expression of osmotic system, photosynthesis, antioxidant system and stress-related genes in cucumber.


Assuntos
Clorofila , Cucumis sativus , Regulação da Expressão Gênica de Plantas , Fotossíntese , Estresse Salino , Tolerância ao Sal , Plântula , Cucumis sativus/genética , Cucumis sativus/crescimento & desenvolvimento , Cucumis sativus/fisiologia , Cucumis sativus/efeitos dos fármacos , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/efeitos dos fármacos , Plântula/fisiologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Tolerância ao Sal/genética , Estresse Salino/genética , Clorofila/metabolismo , Fotossíntese/genética , Fotossíntese/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Glicina Hidroximetiltransferase/genética , Glicina Hidroximetiltransferase/metabolismo , Antioxidantes/metabolismo , Malondialdeído/metabolismo , Plantas Geneticamente Modificadas , Inativação Gênica
2.
Cell Mol Biol Lett ; 29(1): 57, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38649857

RESUMO

In tomato (Solanum lycopersicum), the ripening of fruit is regulated by the selective expression of ripening-related genes, and this procedure is controlled by transcription factors (TFs). In the various plant-specific TF families, the no apical meristem (NAM), Arabidopsis thaliana activating factor 1/2 (ATAF1/2), and cup-shaped cotyledon 2 (CUC2; NAC) TF family stands out and plays a significant function in plant physiological activities, such as fruit ripening (FR). Despite the numerous genes of NAC found in the tomato genome, limited information is available on the effects of NAC members on FR, and there is also a lack of studies on their target genes. In this research, we focus on SlNAP1, which is a NAC TF that positively influences the FR of tomato. By employing CRISPR/Cas9 technology, compared with the wild type (WT), we generated slnap1 mutants and observed a delay in the ethylene production and color change of fruits. We employed the yeast one-hybrid (Y1H) and dual-luciferase reporter (DLR) assays to confirm that SlNAP1 directly binds to the promoters of two crucial genes involved in gibberellin (GA) degradation, namely SlGA2ox1 and SlGA2ox5, thus activating their expression. Furthermore, through a yeast two-hybrid (Y2H), bimolecular fluorescence complementation (BIFC) and luciferase (LUC) assays, we established an interaction between SlNAP1 and SlGID1. Hence, our findings suggest that SlNAP1 regulates FR positively by activating the GA degradation genes directly. Additionally, the interaction between SlNAP1 and SlGID1 may play a role in SlNAP1-induced FR. Overall, our study provides important insights into the molecular mechanisms through which NAC TFs regulate tomato FR via the GA pathway.


Assuntos
Frutas , Regulação da Expressão Gênica de Plantas , Giberelinas , Proteínas de Plantas , Solanum lycopersicum , Fatores de Transcrição , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Frutas/genética , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Giberelinas/metabolismo , Regiões Promotoras Genéticas/genética , Etilenos/metabolismo
3.
Int J Mol Sci ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38279340

RESUMO

Brassinosteroids (BRs) are a group of polyhydroxylated steroids for plant growth and development, regulating numerous physiological and biochemical processes and participating in multi-pathway signaling in plants. 24-Epibrassinolide (EBR) is the most commonly used BR for the investigation of the effects of exogenous steroidal phytohormones on plant physiology. Although SlSERK3B is considered a gene involved in the brassinosteroid (BR) signaling pathway, its specific role in plant growth and development has not been reported in detail. In this study, tomato (Solanum lycopersicum L.) seedlings treated with 0.05 µmol L-1 EBR showed a significant increase in plant height, stem diameter, and fresh weight, demonstrating that BR promotes the growth of tomato seedlings. EBR treatment increased the expression of the BR receptor gene SlBRI1, the co-receptor gene SlSERK3A and its homologs SlSERK3B, and SlBZR1. The SlSERK3B gene was silenced by TRV-mediated virus-induced gene silencing (VIGS) technology. The results showed that both brassinolide (BL) content and BR synthesis genes were significantly up-regulated in TRV-SlSERK3B-infected seedlings compared to the control seedlings. In contrast, plant height, stem diameter, fresh weight, leaf area and total root length were significantly reduced in silenced plants. These results suggest that silencing SlSERK3B may affect BR synthesis and signaling, thereby affecting the growth of tomato seedlings. Furthermore, the photosynthetic capacity of TRV-SlSERK3B-infected tomato seedlings was reduced, accompanied by decreased photosynthetic pigment content chlorophyll fluorescence, and photosynthesis parameters. The expression levels of chlorophyll-degrading genes were significantly up-regulated, and carotenoid-synthesising genes were significantly down-regulated in TRV-SlSERK3B-infected seedlings. In conclusion, silencing of SlSERK3B inhibited BR signaling and reduced photosynthesis in tomato seedlings, and this correlation suggests that SlSERK3B may be related to BR signaling and photosynthesis enhancement.


Assuntos
Plântula , Solanum lycopersicum , Solanum lycopersicum/genética , Fotossíntese , Brassinosteroides/farmacologia , Brassinosteroides/metabolismo , Clorofila/metabolismo , Crescimento e Desenvolvimento
4.
BMC Plant Biol ; 23(1): 2, 2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36588160

RESUMO

BACKGROUND: Methane (CH4) and brassinosteroids (BRs) are important signaling molecules involved in a variety of biological processes in plants. RESULTS: Here, marigold (Tagetes erecta L. 'Marvel') was used to investigate the role and relationship between CH4 and BRs during adventitious root (AR) formation. The results showed a dose-dependent effect of CH4 and BRs on rooting, with the greatest biological effects of methane-rich water (MRW, CH4 donor) and 2,4-epibrassinolide (EBL) at 20% and 1 µmol L- 1, respectively. The positive effect of MRW on AR formation was blocked by brassinoazole (Brz, a synthetic inhibitor of EBL), indicating that BRs might be involved in MRW-regulated AR formation. MRW promoted EBL accumulation during rooting by up-regulating the content of campestanol (CN), cathasterone (CT), and castasterone (CS) and the activity of Steroid 5α-reductase (DET2), 22α-hydroxylase (DWF4), and BR-6-oxidase (BR6ox), indicating that CH4 could induce endogenous brassinolide (BR) production during rooting. Further results showed that MRW and EBL significantly down-regulated the content of cellulose, hemicellulose and lignin during rooting and significantly up-regulated the hydrolase activity, i.e. cmcase, xylanase and laccase. In addition, MRW and EBL also significantly promoted the activity of two major cell wall relaxing factors, xyloglucan endotransglucosylase/hydrolase (XTH) and peroxidase, which in turn promoted AR formation. While, Brz inhibited the role of MRW on these substances. CONCLUSIONS: BR might be involved in CH4-promoted AR formation by increasing cell wall relaxation.


Assuntos
Brassinosteroides , Celulose , Brassinosteroides/farmacologia , Metano/farmacologia , Hidrolases , Raízes de Plantas/fisiologia
5.
Int J Mol Sci ; 24(6)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36982350

RESUMO

The root is an important organ for obtaining nutrients and absorbing water and carbohydrates, and it depends on various endogenous and external environmental stimulations such as light, temperature, water, plant hormones, and metabolic constituents. Auxin, as an essential plant hormone, can mediate rooting under different light treatments. Therefore, this review focuses on summarizing the functions and mechanisms of light-regulated auxin signaling in root development. Some light-response components such as phytochromes (PHYs), cryptochromes (CRYs), phototropins (PHOTs), phytochrome-interacting factors (PIFs) and constitutive photo-morphorgenic 1 (COP1) regulate root development. Moreover, light mediates the primary root, lateral root, adventitious root, root hair, rhizoid, and seminal and crown root development via the auxin signaling transduction pathway. Additionally, the effect of light through the auxin signal on root negative phototropism, gravitropism, root greening and the root branching of plants is also illustrated. The review also summarizes diverse light target genes in response to auxin signaling during rooting. We conclude that the mechanism of light-mediated root development via auxin signaling is complex, and it mainly concerns in the differences in plant species, such as barley (Hordeum vulgare L.) and wheat (Triticum aestivum L.), changes of transcript levels and endogenous IAA content. Hence, the effect of light-involved auxin signaling on root growth and development is definitely a hot issue to explore in the horticultural studies now and in the future.


Assuntos
Proteínas de Arabidopsis , Fitocromo , Ácidos Indolacéticos/metabolismo , Transdução de Sinais , Reguladores de Crescimento de Plantas/metabolismo , Fitocromo/metabolismo , Transdução de Sinal Luminoso , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Arabidopsis/genética
6.
Mol Biol Rep ; 49(12): 11327-11340, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35906509

RESUMO

BACKGROUND: Carbon monoxide (CO) has been reported to be participated in adventitious rooting. However, knowledge about the interrelationship between CO and phytohormones during rooting is obscure. The molecular mechanism of CO-induced rooting is currently unclear. METHODS AND RESULTS: The roles of CO in adventitious rooting in Cucumis sativus L. at the transcriptional level were investigated. The results show that 10 µM hematin (a CO donor) has a significant positive effect on adventitious rooting in cucumber. A total of 1792 differentially expressed genes (DEGs; 1103 up-regulated and 689 down-regulated) were identified in hematin treatment by RNA sequencing analysis. There were 37, 18 and 19 DEGs significantly enriched in plant hormone signal transduction, sucrose and starch metabolism, and phenylalanine metabolism, respectively. Both transcriptome and real-time quantitative PCR results showed that the expressions of AUX22D, IAA6, SAUR21, SAUR24, GH3.5, CYCD3-3, TIFY10a, TIFY10A and TIF9 promoted the accumulation of IAA, BR, JA and SA in plant hormone signal transduction. The up-regulation of HK3, TPPF, otsB, TPS7, TPS9 and the down-regulation of AGPS1, AGPS3 increased the content of starch and total sugar by mediating the activity of some critical enzymes, including HK, TPS, TPP and AGP. PER47, PER61, PER24, PER66, PER4 and CCR2 increased the lignin content. CONCLUSION: Our results suggest that CO could promote the accumulation of plant hormones, starch, sugar and lignin during adventitious rooting by regulating the expression of some related genes, including AUX22D, IAA6, SAUR21, SAUR24, GH3.5, CYCD3-3, TIFY10a, TIFY10A, TIF9 HK3, otsB, TPS7, TPS9, AGPS1, AGPS3, PER47, PER61, PER24, PER66, PER4, and CCR2. Thus, we provides an interesting candidate gene list for further studies on the molecular mechanisms of adventitious rooting.


Assuntos
Cucumis sativus , Monóxido de Carbono/metabolismo , Monóxido de Carbono/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Hemina/metabolismo , Hemina/farmacologia , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/metabolismo , Lignina/metabolismo , Perfilação da Expressão Gênica , Açúcares/metabolismo , Amido/metabolismo
7.
Planta ; 254(5): 106, 2021 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-34689230

RESUMO

MAIN CONCLUSION: HRW increased the content of starch and sucrose via regulating a series of sucrose and starch synthesis genes, which induced the formation of bulblets and adventitious roots of Lilium davidii var. unicolor. Hydrogen gas (H2), as a signaling molecule, has been reported to be involved in plant growth and development. Here, the effect of hydrogen-rich water (HRW) on the formation of bulblets and adventitious roots in the scale cuttings of Lilium davidii var. unicolor and its mechanisms at the molecular levels were investigated. The results revealed that compared with distilled water treatment (Con), the number of bulblets and adventitious roots were significantly promoted by different concentrations of HRW treatment. Treatment with 100% HRW obtained the most positive effects. RNA sequencing (RNA-seq) analysis found that compared with Con, a total of 1702 differentially expressed genes (DEGs, upregulated 552 DEGs, downregulated 1150 DEGs) were obtained under HRW treatment. The sucrose and starch metabolism, cysteine and methionine metabolism and phenylalanine metabolism were significantly enriched in the analysis of the Kyoto encyclopedia of genes and genomes (KEGG). In addition, the genes involved in carbohydrate metabolism were significantly upregulated or downregulated (upregulated 22 DEGs, downregulated 15 DEGs), indicating that starch and sucrose metabolism held a central position. The expressions of 12 DEGs were identified as coding for key enzymes in metabolism of carbohydrates was validated by qPCR during bulblet formation progress. RNA-seq analysis and expression profiles indicated that the unigene levels such as glgc, Susy, otsA and glgP, BMY and TPS were well correlated with sucrose and starch metabolism during HRW-induced bulblet formation. The change of key enzyme content in starch and sucrose metabolism pathway was explored during bulblet formation in Lilium under HRW treatment. Meanwhile, compared with Con, 100% HRW treatment increased the levels of sucrose and starch, and decreased the trehalose content, which were agreed with the expression pattern of DEGs related to the biosynthesis pathway of sucrose, starch and trehalose. Therefore, this study suggested that HRW could promote the accumulation of sucrose and starch contents in mother scales, and decreased the trehalose content, this might provide more energy for bulblet formation.


Assuntos
Lilium , Metabolismo dos Carboidratos , Hidrogênio , Lilium/genética , Amido , Sacarose , Água
8.
Physiol Plant ; 172(4): 1919-1930, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33748992

RESUMO

Previous studies have shown that methane (CH4 ) has promoting roles in the adventitious root (AR) and lateral root (LR) formation in plants. However, whether CH4 could trigger the bulblet formation in scale cutting of Lilium davidii var. unicolor has not been elucidated. To gain insight into the effect of CH4 on the bulblet formation, different concentrations (1, 10, 50, and 100%) of methane-rich water (MRW) and distilled water were applied to treat the scale cuttings of Lilium. We observed that treatment with 100% MRW obviously induced the bulblet formation in scale cuttings. To explore the mechanism of CH4 -induced bulblet formation, the transcriptome of scales was analyzed. A total of 2078 differentially expressed genes (DEGs) were identified. The DEGs were classified into different metabolic pathways, especially phenylpropanoid biosynthesis, starch and sucrose metabolism, and plant signal transduction. Of these, approximately 38 candidate DEGs involved in the plant signal transduction were further studied. In addition, the expression of AP2-ERF/ERF, WRKY, GRAS, ARF, and NAC transcription factors (TFs) was changed by MRW treatment, suggesting their potential involvement in bulblet formation. As for hormones, exogenous IAA, GA, and ABA could induce the bulblet formation. Additional experiments suggested that MRW could increase the endogenous IAA, GA, and JA levels, but decrease the levels of ABA during bulblet formation, which showed that higher IAA, GA, JA levels and lower ABA content might facilitate bulblet formation. In addition, the levels of endogenous hormones were consistent with the expression level of genes involved in phytohormone signal transduction. Overall, this study has revealed that CH4 might improve the bulblet formation of cutting scales in Lilium by regulating the expression of genes related to phytohormone signal transduction and TFs, as well as by changing the endogenous hormone levels.


Assuntos
Lilium , Reguladores de Crescimento de Plantas , Regulação da Expressão Gênica de Plantas , Lilium/genética , Metano , Raízes de Plantas , Transdução de Sinais , Água
9.
J Nat Prod ; 84(1): 11-19, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33356261

RESUMO

Under the guidance of MS/MS-based molecular networking, four new cycloheptapeptides, namely, asperheptatides A-D (1-4), were isolated together with three known analogues, asperversiamide A-C (5-7), from the coral-derived fungus Aspergillus versicolor. The planar structures of the two major compounds, asperheptatides A and B (1 and 2), were determined by comprehensive spectroscopic data analysis. The absolute configurations of the amino acid residues were determined by advanced Marfey's method. The two structurally related trace metabolites, asperheptatides C and D (3 and 4), were characterized by ESI-MS/MS fragmentation methods. A series of new derivatives (8-26) of asperversiamide A (5) were semisynthesized. The antitubercular activities of 1, 2, and 5-26 against Mycobacterium tuberculosis H37Ra were also evaluated. Compounds 9, 13, 23, and 24 showed moderate activities with MIC values of 12.5 µM, representing a potential new class of antitubercular agents.


Assuntos
Agaricales/química , Antozoários/microbiologia , Antituberculosos/química , Aspergillus/química , Cinamatos/química , Mycobacterium tuberculosis/química , Peptídeos Cíclicos/química , Animais , Cromatografia Líquida , Cinamatos/farmacologia , Estrutura Molecular , Peptídeos Cíclicos/metabolismo , Análise Espectral , Espectrometria de Massas em Tandem
10.
Br J Clin Pharmacol ; 85(11): 2547-2558, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31332820

RESUMO

AIMS: The objectives were to investigate the pharmacokinetics, pharmacodynamics and safety of ilaprazole infusion in healthy subjects and patients with esomeprazole as positive control, and then recommend the dosage regimen for Phase 2b/3 studies. METHODS: Three clinical studies were performed. First, 16 healthy subjects received infusion of ilaprazole 30 mg or esomeprazole 80 mg. Second, 12 healthy subjects received ilaprazole 20 mg followed by 10 mg once daily for 2 days. Finally, 20 patients with duodenal ulcers received ilaprazole 20 mg followed by 10 mg for 2 days or esomeprazole 40 mg twice daily for 3 days. Serial blood samples were collected and intragastric pH was recorded. RESULTS: The mean percentages time of intragastric pH >6 was 63.6 and 51.7% for healthy subjects after receiving ilaprazole 30 mg and esomeprazole 80 mg. Linear pharmacokinetics was observed when the dose was increased to 30 mg but the effect was saturated. Ilaprazole 20 mg followed by 10 mg for 2 days provided higher plasma exposure in healthy subjects than patients, but the effect was comparable. After multiple administrations, ilaprazole provided similar effect to esomeprazole. Ilaprazole infusion was safe and well tolerated without serious adverse events. CONCLUSIONS: Ilaprazole provided comparable effect of pH control to esomeprazole, with lower dose and fewer times of administration. There was no significant difference of ilaprazole between healthy subjects and patients regarding intragastric acid inhibition. A loading dose of ilaprazole 20 mg followed by 10 mg once daily for 2 days was recommended for Phase 2b/3 studies.


Assuntos
2-Piridinilmetilsulfinilbenzimidazóis/administração & dosagem , Úlcera Duodenal/tratamento farmacológico , Esomeprazol/administração & dosagem , Inibidores da Bomba de Prótons/administração & dosagem , 2-Piridinilmetilsulfinilbenzimidazóis/efeitos adversos , 2-Piridinilmetilsulfinilbenzimidazóis/farmacocinética , Adulto , China , Úlcera Duodenal/diagnóstico , Duodenoscopia , Esomeprazol/efeitos adversos , Esomeprazol/farmacocinética , Feminino , Ácido Gástrico/metabolismo , Determinação da Acidez Gástrica , Voluntários Saudáveis , Humanos , Infusões Intravenosas , Masculino , Pessoa de Meia-Idade , Inibidores da Bomba de Prótons/efeitos adversos , Inibidores da Bomba de Prótons/farmacocinética , Resultado do Tratamento , Adulto Jovem
11.
J Org Chem ; 84(3): 1228-1237, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30609359

RESUMO

A challenging problem in natural product discovery is to rapidly dereplicate known compounds and expose novel ones from complicated components. Herein, integrating the LC-MS/MS-dependent molecular networking and 1H NMR techniques efficiently and successfully enabled the targeted identification of seven new cyclohexadepsipeptides, chrysogeamides A-G (1-7), from the coral-derived fungus Penicillium chrysogenum (CHNSCLM-0003) which was targeted from a library of marine-derived Penicillium fungi. Compound 4 features a rare 3-hydroxy-4-methylhexanoic acid (HMHA) moiety which was first discovered from marine-derived organisms. Interestingly, isotope-labeling feeding experiments confirmed that 13C1-l-Leu was transformed into 13C1-d-Leu moiety, indicating that d-Leu could be isomerized from l-Leu. Compounds 1 and 2 obviously promoted angiogenesis in zebrafish at 1.0 µg/mL with nontoxic to embryonic zebrafish at 100 µg/mL. Combining molecular networking with 1H NMR as a discovery tool will be implemented as a systematic strategy, not only for known compounds dereplication but also for untapped reservoir discovery.


Assuntos
Produtos Biológicos/química , Fungos/química , Penicillium/química , Espectrometria de Massas em Tandem/métodos , Organismos Aquáticos , Espectroscopia de Prótons por Ressonância Magnética
12.
J Nat Prod ; 82(9): 2477-2482, 2019 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-31478377

RESUMO

Six new sordarin tetracyclic diterpene glycosides, moriniafungins B-G (1-6), and a new sordaricin tetracyclic diterpene, sordaricin B (8), together with two known analogues, moriniafungin (7) and sordaricin (9), were isolated from the zoanthid-derived fungus Curvularia hawaiiensis TA26-15. The structures of the new compounds were elucidated by comprehensive analyses of spectroscopic data, including 1D and 2D NMR and MS data. Compounds 1-6 represent the first case of sordarins from marine-derived fungi possessing a sordarose with a spiro 1,3-dioxolan-4-one ring, which is rare in the nature. Compound 4 showed antifungal activity against Candida albicans ATCC10231 with an MIC value of 2.9 µM.


Assuntos
Ascomicetos/química , Dioxolanos/química , Diterpenos/isolamento & purificação , Glicosídeos/química , Indenos/isolamento & purificação , Diterpenos/química , Indenos/química , Estrutura Molecular , Análise Espectral/métodos
13.
Nanotechnology ; 29(10): 105704, 2018 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-29313522

RESUMO

Drug resistance of bacteria has become a global health problem, as it makes conventional antibiotics less efficient. It is urgently needed to explore novel antibacterial materials and develop effective treatment strategies to overcome the drug resistance of antibiotics. Herein, we successfully synthesized silver decorated sandwich-like mesoporous silica/reduced graphene oxide nanosheets (rGO/MSN/Ag) as a novel antibacterial material through facile method. The rGO and Ag nanoparticles can be reduced in the reaction system without adding any other reductants. In addition, the rGO/MSN/Ag showed higher photothermal conversion capacity due to the modification of silver nanoparticles and exhibited excellent antibacterial activities against Pseudomonas putida, Escherichia coli and Rhodococcus at relatively low dosages, which was confirmed by the minimum inhibitory concentration (MIC) test. Meanwhile, the E. coli with a high concentration was selected for exposure using an 808 nm laser, and the antibacterial effect was obviously enhanced by the near-infrared irradiation induced photothermal effect. Moreover, the hepatocyte LO2 were used for the cytotoxicity evaluation, and the rGO/MSN/Ag showed low toxicity and were without detectable cytotoxicity at the antimicrobial dose. As the prepared rGO/MSN/Ag nanosheets have the advantages of low-cost and high antibacterial activity, they might be of promising and useful antibacterial agents for different applications.

14.
Mar Drugs ; 15(6)2017 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-28587090

RESUMO

Three new diphenyl ether derivatives-phomaethers A-C (1-3) and five known compounds-including a diphenyl ether analog, 2,3'-dihydroxy-4-methoxy-5',6-dimethyl diphenyl ether (4); and four isocoumarin derivatives, diaportinol (5), desmethyldiaportinol (6), citreoisocoumarinol (7), and citreoisocoumarin (8)-were isolated from a gorgonian-derived fungus Phoma sp. (TA07-1). Their structures were elucidated by extensive spectroscopic investigation. The absolute configurations of 1 and 2 were determined by acid hydrolysis reactions. It was the first report to discover the diphenyl glycoside derivatives from coral-derived fungi. Compounds 1, 3, and 4 showed selective strong antibacterial activity against five pathogenic bacteria with the minimum inhibiting concentration (MIC) values and minimum bactericidal concentration (MBC) values between 0.156 and 10.0 µM.


Assuntos
Antibacterianos/química , Ascomicetos/química , Isocumarinas/química , Éteres Fenílicos/química , Antibacterianos/farmacologia , Fatores Biológicos/química , Fatores Biológicos/farmacologia , Isocumarinas/farmacologia , Testes de Sensibilidade Microbiana/métodos , Éteres Fenílicos/farmacologia
15.
Mar Drugs ; 15(11)2017 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-29165326

RESUMO

A new centrosymmetric cyclohexapeptide, aspersymmetide A (1), together with a known peptide, asperphenamate (2), was isolated from the fungus Aspergillus versicolor isolated from a gorgonian coral Carijoa sp., collected from the South China Sea. The chemical structure of 1 was elucidated by analyzing its NMR spectroscopy and MS spectrometry data, and the absolute configurations of the amino acids of 1 were determined by Marfey's method and UPLC-MS analysis of the hydrolysate. Aspersymmetide A (1) represents the first example of marine-derived centrosymmetric cyclohexapeptide. Moreover, 1 exhibited weak cytotoxicity against NCI-H292 and A431 cell lines at the concentration of 10 µM.


Assuntos
Aspergillus/química , Proteínas Fúngicas/química , Animais , Antozoários/microbiologia , Linhagem Celular Tumoral , China , Humanos , Células MCF-7 , Espectroscopia de Ressonância Magnética/métodos , Biologia Marinha/métodos
16.
Mar Drugs ; 14(3)2016 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-27005638

RESUMO

One new hydroanthraquinone dimer with a rare C-9-C-7' linkage, nigrodiquinone A (1), and four known anthraquinone monomers 2-5, were isolated from a fungus Nigrospora sp. obtained from the zoanthid Palythoa haddoni collected in the South China Sea. The structure of 1 was established through extensive NMR spectroscopy, and the absolute configuration was elucidated by comparing computed electronic circular dichroism (ECD) and optical rotations (OR) with experimental results. All the compounds were evaluated for antiviral activity, and 1 was also evaluated for antibacterial activity. Compound 4 displayed mild antiviral activity against coxsackie virus (Cox-B3) with the IC50 value of 93.7 µM, and 5 showed an IC50 value of 74.0 µM against respiratory syncytial virus (RSV).


Assuntos
Antraquinonas/isolamento & purificação , Antibacterianos/isolamento & purificação , Antivirais/isolamento & purificação , Ascomicetos/química , Antraquinonas/química , Antraquinonas/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Antivirais/química , Antivirais/farmacologia , China , Dicroísmo Circular , Concentração Inibidora 50 , Espectroscopia de Ressonância Magnética , Oceanos e Mares , Rotação Ocular
17.
Dig Dis Sci ; 59(10): 2417-22, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24801687

RESUMO

BACKGROUND AND AIMS: Ilaprazole is a novel proton pump inhibitor that has been marketed as an oral therapy for acid-related diseases in China and Korea. This study aimed to compare the gastroprotective effects of intravenous and enteral ilaprazole in rat models. METHODS: The rats were divided into 7-8 groups receiving vehicle, esomeprazole, and different doses of intravenous and enteral ilaprazole. The rats were then exposed to indomethacin (30 mg/kg, i.g.), or water-immersion stress and gastric lesions were examined. The effects of different treatments on histamine (10 µmol/kg/h)-induced acid secretion were also observed. RESULTS: Intravenous ilaprazole exhibited high antiulcer activity in a dose-dependent manner. Ilaprazole at a dose of 3 mg/kg decreased ulcer number and index to the same extent as 20 mg/kg esomeprazole. Moreover, the potency of intravenous ilaprazole is superior to that of intragastric ilaprazole. In anesthetized rats, the inhibitory effect of intravenous ilaprazole on histamine-induced acid secretion is faster and longer-lasting than that of intraduodenal ilaprazole. CONCLUSION: Intravenous ilaprazole is more potent than oral ilaprazole against indomethacin- or stress-induced gastric lesions, with faster and longer inhibition of acid secretion.


Assuntos
2-Piridinilmetilsulfinilbenzimidazóis/administração & dosagem , 2-Piridinilmetilsulfinilbenzimidazóis/uso terapêutico , Fármacos Gastrointestinais/administração & dosagem , Fármacos Gastrointestinais/uso terapêutico , Úlcera Gástrica/tratamento farmacológico , Animais , Anti-Inflamatórios não Esteroides/toxicidade , Ácido Gástrico/metabolismo , Mucosa Gástrica/metabolismo , Histamina/farmacologia , Indometacina/toxicidade , Masculino , Ratos , Ratos Sprague-Dawley , Estômago/efeitos dos fármacos , Estômago/patologia , Estresse Fisiológico
18.
Plant Physiol Biochem ; 207: 108329, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38184883

RESUMO

Abiotic stress is one of the main threats affecting crop growth and production. Nitric oxide (NO), an important signaling molecule involved in wide range of plant growth and development as well as in response to abiotic stress. NO can exert its biological functions through protein S-nitrosylation, a redox-based posttranslational modification by covalently adding NO moiety to a reactive cysteine thiol of a target protein to form an S-nitrosothiol (SNO). Protein S-nitrosylation is an evolutionarily conserved mechanism regulating multiple aspects of cellular signaling in plant. Recently, emerging evidence have elucidated protein S-nitrosylation as a modulator of plant in responses to abiotic stress, including salt stress, extreme temperature stress, light stress, heavy metal and drought stress. In addition, significant mechanism has been made in functional characterization of protein S-nitrosylated candidates, such as changing protein conformation, and the subcellular localization of proteins, regulating protein activity and influencing protein interactions. In this study, we updated the data related to protein S-nitrosylation in plants in response to adversity and gained a deeper understanding of the functional changes of target proteins after protein S-nitrosylation.


Assuntos
Óxido Nítrico , Plantas , Plantas/metabolismo , Óxido Nítrico/metabolismo , Desenvolvimento Vegetal , Transdução de Sinais , Estresse Fisiológico , Processamento de Proteína Pós-Traducional
19.
Mol Neurobiol ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963532

RESUMO

The comorbidity of anxiety and depression frequently occurs in patients with neuropathic pain. The ventrolateral orbital cortex (VLO) plays a critical role in mediating neuropathic pain and anxiodepression in rodents. Previous studies suggested that 5-HT6 receptors in the VLO are involved in neuropathic pain. Strong evidence supports a close link between 5-HT6 receptors and affective disorders such as depression and anxiety disorders. However, it remains unclear whether the 5-HT6 receptors in the VLO are involved in neuropathic pain-induced anxiodepression. Using a rat neuropathic pain model of spared nerve injury (SNI), we demonstrated that rats exhibited significant anxiodepression-like behaviors and the expression of VLO 5-HT6 receptors obviously decreased four weeks after SNI surgery. Microinjection of the 5-HT6 receptor agonist EMD-386088 into the VLO or overexpression of VLO 5-HT6 receptors alleviated anxiodepression-like behaviors. These effects were blocked by pre-microinjection of a selective 5-HT6 receptor antagonist (SB-258585) or inhibitors of AC (SQ-22536), PKA (H89), and MEK1/2 (U0126) respectively. Meanwhile, the expression of p-ERK, p-CREB, and BDNF in the VLO decreased four weeks after SNI surgery. Furthermore, administration of EMD-386088 upregulated the expression of BDNF, p-ERK, and p-CREB in the VLO of SNI rats, which were reversed by pre-injection of SB-258585. These findings suggest that activating 5-HT6 receptors in the VLO has anti-anxiodepressive effects in rats with neuropathic pain via activating AC-cAMP-PKA-MERK-CREB-BDNF signaling pathway. Accordingly, 5-HT6 receptor in the VLO could be a potential target for the treatment of the comorbidity of neuropathic pain and anxiodepression.

20.
Plant Physiol Biochem ; 215: 109079, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39213944

RESUMO

Many studies showed NAC transcription factors play an important role in fruit ripening. Moreover, sucrose and starch metabolism is also closely related to fruit ripening. However, there are a few studies focus on whether NAC regulates sucrose and starch metabolism to influence fruit ripening. In this study, virus-induced gene silencing (VIGS) of SlNAP1 suppressed fruit ripening and delayed color transformation. The chlorophyll (including Chla, Chlb, and Chla + b) degradation and carotenoid synthesis in SlNAP1-silenced fruits were dramatically suppressed. Silencing SlNAP1 decreased soluble sugar and reducing sugar accumulation in fruits, and increased starch content. The activity of starch degrading enzymes, including α amylase (AMY) and ß amylase (BAM) was significantly lower in SlNAP1-silenced fruits than in the control fruits, whereas denosine diphosphoglucose pyrophosphorylase (AGP) activity was significantly higher. In addition, the expression of starch degradation-related genes (SlAMY1, SlAMY2, SlBAM1, SlBAM7, SlGWD, SlPWD) in SlNAP1-silenced fruits was significantly suppressed, while starch synthesis-related genes (SlAGPase1, SlAGPase2) was significantly increased. Compared with the control fruits, SlNAP1-silenced fruits showed significantly lower sucrose and glucose content. The expression level of sucrose and glucose metabolism-related genes such as Slsus1, Slsus3, SlSPS, SlHxk1, SlHxk2, SlPK1, and SlPK2 was significantly lower in SlNAP1-silenced fruits than in the control fruits. Overall, this study revealed that SlNAP1 gene might positively regulate fruit ripening by influencing carbohydrate metabolism.


Assuntos
Adenosina Trifosfatases , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Solanum lycopersicum , Metabolismo dos Carboidratos , Clorofila/metabolismo , Frutas/metabolismo , Frutas/genética , Frutas/crescimento & desenvolvimento , Inativação Gênica , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Amido/metabolismo , Sacarose/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Adenosina Trifosfatases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA