Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Soft Matter ; 14(34): 6994-7002, 2018 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-30095846

RESUMO

Understanding evaporation or drying in granular media still remains complex despite recent advancements. Evaporation depends on liquid transport across a connected film network from the bulk to the surface. In this study, we investigate the stability of film networks as a function of the geometry of granular chains of spherical grains. Using a controlled experimental approach, we vary the grain arrangement or packing and measure the height of the liquid film network during evaporation as packing shifts from loose-packed to close-packed arrangement. This height can be calculated from an equilibrium between hydrostatic pressure and the capillary pressure difference in the vertical film network. Following a simulation approach using Surface Evolver, we evaluate the pressure variation due to dewetting of the meniscus volume in the grains in both the percolating front and evaporating front within the two-phase zone of air/water mixture. Results show good agreement between model and experiment. We find that above a "critical" packing angle, the liquid continuity is broken and films connections fragment into separate, isolated capillary bridges.

2.
Nano Lett ; 15(12): 8008-12, 2015 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-26580005

RESUMO

Small-angle X-ray and neutron scattering provide powerful tools to selectively characterize the inorganic and organic components of hybrid nanomaterials. Using hydrophobic gold nanoparticles coated with several commercial and dendritic thiols, the size of the organic layer on the gold particles is shown to increase from 1.2 to 4.1 nm. A comparison between solid-state diffraction from self-assembled lattices of nanoparticles and the solution data from neutron scattering suggests that engineering softness/deformability in nanoparticle coatings is less straightforward than simply increasing the organic size. The "dendritic effect" in which higher generations yield increasingly compact molecules explains changes in the deformability of organic ligand shells.

3.
J Am Chem Soc ; 137(33): 10728-34, 2015 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-26258660

RESUMO

Self-assembly of nanoparticles into designed structures with controlled interparticle separations is of crucial importance for the engineering of new materials with tunable functions and for the subsequent bottom-up fabrication of functional devices. In this study, a series of lipophilic, highly flexible, disulfide dendritic wedges (generations 0-4), based on 2,2-bis(hydroxymethyl)propionic acid, was designed to bind Au nanoparticles with a thiolate bond. By controlling the solvent evaporation rate, the corresponding dendron-capped Au hybrids were found to self-organize into hexagonal close-packed (hcp) superlattices. The interparticular spacing was progressively varied from 2.2 to 6.3 nm with increasing dendritic generation, covering a range that is intermediate between commercial ligands and DNA-based ligand shells. Dual mixtures made from some of these dendronized hybrids (i.e., same inner core size but different dendritic covering) yielded binary superlattice structures of unprecedented single inorganic components, which are isostructural with NaZn13 and CaCu5 crystals.

4.
Sci Rep ; 9(1): 14195, 2019 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-31578384

RESUMO

We investigate certain aspects of the physical mechanisms of root growth in a granular medium and how these roots adapt to changes in water distribution induced by the presence of structural inhomogeneities in the form of solid intrusions. Physical intrusions such as a square rod added into the 2D granular medium maintain robust capillary action, pumping water from the more saturated areas at the bottom of the cell towards the less saturated areas near the top of the cell while the rest of the medium is slowly devoid of water via evaporation. The intrusion induces "preferential tropism" of roots by first generating a humidity gradient that attracts the root to grow towards it. Then it guides the roots and permits them to grow deeper into more saturated regions in the soil. This further allows more efficient access to available water in the deeper sections of the medium thereby resulting to increased plant lifetime.


Assuntos
Raízes de Plantas/crescimento & desenvolvimento , Tropismo/fisiologia , Água/química , Umidade , Solo/química
5.
J Biomech ; 43(3): 500-5, 2010 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-19880123

RESUMO

In this paper we report a study where we use a novel optical tweezers technique to measure the local viscoelastic properties of type I collagen solutions spanning the sol-to-gel transition. We use phase contrast optical microscopy to reveal dense and sparse regions of the rigid fibril networks, and find that the spatial variations in the mechanical properties of the collagen gels closely follow the structural properties. Within the dense phase of the connected network in the gel samples, there are regions that exhibit drastically different viscoelastic properties. Within the sparse regions of the gel samples, no evidence of elasticity is found. In type I collagen gels, we find a high degree of structural inhomogeneity. The inhomogeneity in the structural properties of collagen gels and the corresponding viscoelastic properties provide benchmark measurements for the behavior of desirable biological materials, or tissue equivalents.


Assuntos
Colágeno Tipo I/química , Colágeno Tipo I/ultraestrutura , Géis/química , Pinças Ópticas , Módulo de Elasticidade , Teste de Materiais , Conformação Molecular , Estresse Mecânico , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA