Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Gen Comp Endocrinol ; 187: 15-22, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23510857

RESUMO

Birds can manipulate offspring sex ratio under natural and experimental conditions and maternal hormones have been shown to be involved in this process. Studies also provided evidence for the presence of sex specific concentrations of yolk hormones in avian eggs. These findings led to the suggestion that yolk hormones could influence genetic sex determination in birds. However, in previous studies, yolk hormone concentrations and egg sex were studied in incubated eggs, although incubation of the eggs and embryonic development can alter yolk hormone concentrations and measured sex ratio. This study is the first to determine a wide array of egg components and hen body weight in relation to the sex of the egg in unincubated eggs. Egg parameters studied were yolk concentrations of testosterone, estradiol, androstenedione, progesterone, dihydrotestosterone, and glucose, and egg weight and dimensions. In addition, we studied the associations among all measured parameters. Associations were found between a number of yolk hormones (progesterone associated with testosterone, estradiol and androstenedione; androstenedione with testosterone; dihydrotestosterone with estradiol and androstenedione) as well as between yolk testosterone and egg length and egg weight. There were no significant overall differences between male and female chicken eggs in any of the measured egg parameters. However, there were a few interactions such as the interaction of egg sex with dihydrotestosterone and with hen body weight which predicted estradiol levels and an interaction of estradiol levels with egg width for predicting sex of egg. Their biological relevance need, however, further study.


Assuntos
Gema de Ovo/metabolismo , Ovos , Androstenodiona/metabolismo , Animais , Peso Corporal/fisiologia , Embrião de Galinha , Galinhas , Di-Hidrotestosterona/metabolismo , Feminino , Glucose/metabolismo , Masculino , Progesterona/metabolismo , Radioimunoensaio , Testosterona/metabolismo
2.
PLoS One ; 18(10): e0292650, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37797079

RESUMO

Goat milk is produced on mainstream and artisanal farms. It was expected that the farm management may influence the microbial population of the milk. Therefore, we investigated the bacterial content and microbiota composition of raw milk in relation to Dutch goat farm management. After amplicon sequencing we analyzed the taxa at phylum and genus levels, and used the relative values enabling to provide information about the variation among the different samples. On ten farms our results indicated that the number of bacterial colony forming units and microbiota composition of the milk, directly after milking was variable among farms and not related to the farm management system. At the phylum level the phyla Firmicutes, Actinobacteria, Proteobacteria, and to a minor extend Bacteriodota were the dominant phyla in the raw goat milk, together usually comprising 90% of the total bacterial phyla. The most dominant genera were Staphylococcus, Pseudomonas, Lactococcus, Microbacteria, Acinetobacteria, and Corinebacteria. The number of bacterial phyla and genera does not differ between the mainstream and artisanal farms, although the Shannon index may be numerically higher in the mainstream farms as compared to artisanal farms. In addition, the variability is higher among artisanal farms, which may be due to less standardization of the management. The milk microbiota composition differed among farms. Repeated sampling of a farm showed that this changed over time. The lactic acid producing bacteria showed a similar pattern. Variable microbiota richness amount and diversity of microorganisms were present in different farming systems. We concluded that farm-specific management and sampling moment were the major determining factors for the milk microbiota composition.


Assuntos
Lactobacillales , Microbiota , Animais , Leite/microbiologia , Fazendas , Bactérias/genética , Cabras
3.
Mol Ecol Resour ; 12(3): 421-7, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22336033

RESUMO

In birds, offspring sex ratio manipulation by mothers is now well established with potentially important consequences for evolution and animal breeding. In most studies on primary sex ratio of birds, eggs are sexed after incubation by the use of PCR methods targeted to the sex-linked CHD1 genes. Sexing of unincubated eggs would be preferred, but as fertile and infertile blastodiscs cannot be distinguished macroscopically, errors could arise from PCR amplifications of parental DNA associated with the vitelline membrane of infertile eggs. In this study, we stained blastodiscs without the vitelline membrane with Hoechst 33342. This allowed unequivocal distinction between fertile and infertile blastodiscs. Fertile blastodiscs contained thousands of fluorescent nuclei, whereas no nuclei were seen in infertile eggs. In addition, after nucleic acid analysis, fertile blastodiscs yielded much stronger chromosomal DNA and CHD1-targeted PCR bands on agarose gels compared with infertile blastodiscs. These findings indicate that fertile blastodiscs contain much more embryonic DNA than parental DNA, allowing reliable sexing of the fertile eggs. The differences between fertile and infertile blastodiscs in chromosomal DNA and CHD1 PCR banding intensities alone could also be used to distinguish fertile from infertile eggs without using Hoechst staining. We conclude that identifying fertile blastodiscs either by Hoechst staining or by analyzing the yield of chromosomal DNA and CHD1-PCR products, combined with CHD1-targeted PCR amplification, presents an easy and reliable method to sex unincubated eggs.


Assuntos
Aves/embriologia , Blastodisco/metabolismo , Análise para Determinação do Sexo/métodos , Razão de Masculinidade , Coloração e Rotulagem/métodos , Animais , Proteínas Aviárias/genética , Benzimidazóis/metabolismo , Proteínas de Ligação a DNA/genética , Corantes Fluorescentes/metabolismo , Reação em Cadeia da Polimerase/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA