Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Cell ; 158(3): 620-32, 2014 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-25083872

RESUMO

Polarization of the plasma membrane (PM) into domains is an important mechanism to compartmentalize cellular activities and to establish cell polarity. Polarization requires formation of diffusion barriers that prevent mixing of proteins between domains. Recent studies have uncovered that the endoplasmic reticulum (ER) of budding yeast and neurons is polarized by diffusion barriers, which in neurons controls glutamate signaling in dendritic spines. The molecular identity of these barriers is currently unknown. Here, we show that a direct interaction between the ER protein Scs2 and the septin Shs1 creates the ER diffusion barrier in yeast. Barrier formation requires Epo1, a novel ER-associated subunit of the polarisome that interacts with Scs2 and Shs1. ER-septin tethering polarizes the ER into separate mother and bud domains, one function of which is to position the spindle in the mother until M phase by confining the spindle capture protein Num1 to the mother ER.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte/genética , Polaridade Celular , Proteínas do Citoesqueleto/metabolismo , Difusão , Retículo Endoplasmático/química , Proteínas de Membrana/genética , Membrana Nuclear/metabolismo , Fase S , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
2.
Biochem Cell Biol ; 100(5): 437-443, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35728263

RESUMO

The 43rd Asilomar Chromatin, Chromosomes, and Epigenetics Conference was held in an entirely online format from 9 to 11 December 2021. The conference enabled presenters at various career stages to share promising new findings, and presentations covered modern chromatin research across an array of model systems. Topics ranged from the fundamental principles of nuclear organization and transcription regulation to key mechanisms underlying human disease. The meeting featured five keynote speakers from diverse backgrounds and was organized by Juan Ausió, University of Victoria (British Columbia, Canada), James Davie, University of Manitoba (Manitoba, Canada), Philippe T. Georgel, Marshall University (West Virginia, USA), Michael Goldman, San Francisco State University (California, USA), LeAnn Howe, The University of British Columbia (British Columbia, Canada), Jennifer A. Mitchell, University of Toronto (Ontario, Canada), and Sally G. Pasion, San Francisco State University (California, USA).


Assuntos
Cromatina , Epigenômica , Canadá , Cromatina/genética , Cromossomos/genética , Epigênese Genética , Humanos
3.
Proc Natl Acad Sci U S A ; 109(45): 18505-10, 2012 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-23091032

RESUMO

Histone H3 lysine 4 trimethylation (H3K4me3) is a hallmark of transcription initiation, but how H3K4me3 is demethylated during gene repression is poorly understood. Jhd2, a JmjC domain protein, was recently identified as the major H3K4me3 histone demethylase (HDM) in Saccharomyces cerevisiae. Although JHD2 is required for removal of methylation upon gene repression, deletion of JHD2 does not result in increased levels of H3K4me3 in bulk histones, indicating that this HDM is unable to demethylate histones during steady-state conditions. In this study, we showed that this was due to the negative regulation of Jhd2 activity by histone H3 lysine 14 acetylation (H3K14ac), which colocalizes with H3K4me3 across the yeast genome. We demonstrated that loss of the histone H3-specific acetyltransferases (HATs) resulted in genome-wide depletion of H3K4me3, and this was not due to a transcription defect. Moreover, H3K4me3 levels were reestablished in HAT mutants following loss of JHD2, which suggested that H3-specific HATs and Jhd2 serve opposing functions in regulating H3K4me3 levels. We revealed the molecular basis for this suppression by demonstrating that H3K14ac negatively regulated Jhd2 demethylase activity on an acetylated peptide in vitro. These results revealed the existence of a general mechanism for removal of H3K4me3 following gene repression.


Assuntos
Histonas/metabolismo , Lisina/metabolismo , Saccharomyces cerevisiae/metabolismo , Acetilação , Regulação Fúngica da Expressão Gênica , Histona Acetiltransferases/metabolismo , Histona Desmetilases com o Domínio Jumonji , Metilação , Modelos Biológicos , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae , Especificidade por Substrato
4.
Genetics ; 226(4)2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38407959

RESUMO

The disruption of chromatin structure can result in transcription initiation from cryptic promoters within gene bodies. While the passage of RNA polymerase II is a well-characterized chromatin-disrupting force, numerous factors, including histone chaperones, normally stabilize chromatin on transcribed genes, thereby repressing cryptic transcription. DNA replication, which employs a partially overlapping set of histone chaperones, is also inherently disruptive to chromatin, but a role for DNA replication in cryptic transcription has never been examined. In this study, we tested the hypothesis that, in the absence of chromatin-stabilizing factors, DNA replication can promote cryptic transcription in Saccharomyces cerevisiae. Using a novel fluorescent reporter assay, we show that multiple factors, including Asf1, CAF-1, Rtt106, Spt6, and FACT, block transcription from a cryptic promoter, but are entirely or partially dispensable in G1-arrested cells, suggesting a requirement for DNA replication in chromatin disruption. Collectively, these results demonstrate that transcription fidelity is dependent on numerous factors that function to assemble chromatin on nascent DNA.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Histonas/metabolismo , Proteínas Nucleares/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcrição Gênica , Cromatina/genética , Chaperonas de Histonas/genética , DNA , Chaperonas Moleculares/metabolismo
5.
Curr Biol ; 31(1): 66-76.e6, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33125869

RESUMO

DNA replication is a ubiquitous and conserved cellular process. However, regulation of DNA replication is only understood in a small fraction of organisms that poorly represent the diversity of genetic systems in nature. Here we used computational and experimental approaches to examine the function and evolution of one such system, the replication band (RB) in spirotrich ciliates, which is a localized, motile hub that traverses the macronucleus while replicating DNA. We show that the RB can take unique forms in different species, from polar bands to a "replication envelope," where replication initiates at the nuclear periphery before advancing inward. Furthermore, we identify genes involved in cellular transport, including calcium transporters and cytoskeletal regulators, that are associated with the RB and may be involved in its function and translocation. These findings highlight the evolution and diversity of DNA replication systems and provide insights into the regulation of nuclear organization and processes.


Assuntos
Evolução Biológica , Cilióforos/genética , Replicação do DNA , DNA/metabolismo , Macronúcleo/genética , Cálcio/metabolismo , Cilióforos/citologia , Cilióforos/metabolismo , Citoesqueleto/metabolismo , Macronúcleo/metabolismo , Filogenia
6.
Nat Commun ; 12(1): 210, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33431884

RESUMO

Histone acetylation is a ubiquitous hallmark of transcription, but whether the link between histone acetylation and transcription is causal or consequential has not been addressed. Using immunoblot and chromatin immunoprecipitation-sequencing in S. cerevisiae, here we show that the majority of histone acetylation is dependent on transcription. This dependency is partially explained by the requirement of RNA polymerase II (RNAPII) for the interaction of H4 histone acetyltransferases (HATs) with gene bodies. Our data also confirms the targeting of HATs by transcription activators, but interestingly, promoter-bound HATs are unable to acetylate histones in the absence of transcription. Indeed, HAT occupancy alone poorly predicts histone acetylation genome-wide, suggesting that HAT activity is regulated post-recruitment. Consistent with this, we show that histone acetylation increases at nucleosomes predicted to stall RNAPII, supporting the hypothesis that this modification is dependent on nucleosome disruption during transcription. Collectively, these data show that histone acetylation is a consequence of RNAPII promoting both the recruitment and activity of histone acetyltransferases.


Assuntos
Genoma Fúngico , Histonas/metabolismo , Saccharomyces cerevisiae/genética , Transcrição Gênica , Acetilação , Animais , Cromatina/metabolismo , Histona Acetiltransferases/metabolismo , Camundongos , Transativadores/metabolismo
7.
Antioxidants (Basel) ; 10(8)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34439480

RESUMO

Epigenetic aberrations are linked to sporadic breast cancer. Interestingly, certain dietary polyphenols with anti-cancer effects, such as pterostilbene (PTS), have been shown to regulate gene expression by altering epigenetic patterns. Our group has proposed the involvement of DNA methylation and DNA methyltransferase 3B (DNMT3B) as vital players in PTS-mediated suppression of candidate oncogenes and suggested a role of enhancers as target regions. In the present study, we assess a genome-wide impact of PTS on epigenetic marks at enhancers in highly invasive MCF10CA1a breast cancer cells. Following chromatin immunoprecipitation (ChIP)-sequencing in MCF10CA1a cells treated with 7 µM PTS for 9 days, we discovered that PTS leads to increased binding of DNMT3B at enhancers of 77 genes, and 17 of those genes display an overlapping decrease in the occupancy of trimethylation at lysine 36 of histone 3 (H3K36me3), a mark of active enhancers. We selected two genes, PITPNC1 and LINC00910, and found that their enhancers are hypermethylated in response to PTS. These changes coincided with the downregulation of gene expression. Of importance, we showed that 6 out of 17 target enhancers, including PITPNC1 and LINC00910, are bound by an oncogenic transcription factor OCT1 in MCF10CA1a cells. Indeed, the six enhancers corresponded to genes with established or putative cancer-driving functions. PTS led to a decrease in OCT1 binding at those enhancers, and OCT1 depletion resulted in PITPNC1 and LINC00910 downregulation, further demonstrating a role for OCT1 in transcriptional regulation. Our findings provide novel evidence for the epigenetic regulation of enhancer regions by dietary polyphenols in breast cancer cells.

8.
J Nutr Biochem ; 98: 108815, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34242723

RESUMO

Transcription factor (TF)-mediated regulation of genes is often disrupted during carcinogenesis. The DNA methylation state of TF-binding sites may dictate transcriptional activity of corresponding genes. Stilbenoid polyphenols, such as pterostilbene (PTS), have been shown to exert anticancer action by remodeling DNA methylation and gene expression. However, the mechanisms behind these effects still remain unclear. Here, the dynamics between oncogenic TF OCT1 binding and de novo DNA methyltransferase DNMT3B binding in PTS-treated MCF10CA1a invasive breast cancer cells has been explored. Using chromatin immunoprecipitation (ChIP) followed by next generation sequencing, we determined 47 gene regulatory regions with decreased OCT1 binding and enriched DNMT3B binding in response to PTS. Most of those genes were found to have oncogenic functions. We selected three candidates, PRKCA, TNNT2, and DANT2, for further mechanistic investigation taking into account PRKCA functional and regulatory connection with numerous cancer-driving processes and pathways, and some of the highest increase in DNMT3B occupancy within TNNT2 and DANT2 enhancers. PTS led to DNMT3B recruitment within PRKCA, TNNT2, and DANT2 at loci that also displayed reduced OCT1 binding. Substantial decrease in OCT1 with increased DNMT3B binding was accompanied by PRKCA promoter and TNNT2 and DANT2 enhancer hypermethylation, and gene silencing. Interestingly, DNA hypermethylation of the genes was not detected in response to PTS in DNMT3B-CRISPR knockout MCF10CA1a breast cancer cells. It indicates DNMT3B-dependent methylation of PRKCA, TNNT2, and DANT2 upon PTS. Our findings provide a better understanding of mechanistic players and their gene targets that possibly contribute to the anticancer action of stilbenoid polyphenols.


Assuntos
Neoplasias da Mama/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA/efeitos dos fármacos , Oncogenes/genética , Transportador 1 de Cátions Orgânicos/metabolismo , Estilbenos/farmacologia , Antineoplásicos/farmacologia , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina/métodos , Feminino , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Humanos , Regiões Promotoras Genéticas , Estilbenos/metabolismo , DNA Metiltransferase 3B
9.
Mol Cell Biol ; 26(8): 3018-28, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16581777

RESUMO

The SAS3-dependent NuA3 histone acetyltransferase complex was originally identified on the basis of its ability to acetylate histone H3 in vitro. Whether NuA3 is capable of acetylating histones in vivo, or how the complex is targeted to the nucleosomes that it modifies, was unknown. To address this question, we asked whether NuA3 is associated with chromatin in vivo and how this association is regulated. With a chromatin pulldown assay, we found that NuA3 interacts with the histone H3 amino-terminal tail, and loss of the H3 tail recapitulates phenotypes associated with loss of SAS3. Moreover, mutation of histone H3 lysine 14, the preferred site of acetylation by NuA3 in vitro, phenocopies a unique sas3Delta phenotype, suggesting that modification of this residue is important for NuA3 function. The interaction of NuA3 with chromatin is dependent on the Set1p and Set2p histone methyltransferases, as well as their substrates, histone H3 lysines 4 and 36, respectively. These results confirm that NuA3 is functioning as a histone acetyltransferase in vivo and that histone H3 methylation provides a mark for the recruitment of NuA3 to nucleosomes.


Assuntos
Cromatina/metabolismo , Histona Acetiltransferases/metabolismo , Histonas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Western Blotting , Histona Acetiltransferases/genética , Histonas/química , Histonas/genética , Lisina/química , Metilação , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética
10.
Mol Cell Biol ; 26(21): 7871-9, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16923967

RESUMO

The ING (inhibitor of growth) protein family includes a group of homologous nuclear proteins that share a highly conserved plant homeodomain (PHD) finger domain at their carboxyl termini. Members of this family are found in multiprotein complexes that posttranslationally modify histones, suggesting that these proteins serve a general role in permitting various enzymatic activities to interact with nucleosomes. There are three members of the ING family in Saccharomyces cerevisiae: Yng1p, Yng2p, and Pho23p. Yng1p is a component of the NuA3 histone acetyltransferase complex and is required for the interaction of NuA3 with chromatin. To gain insight into the function of the ING proteins, we made use of a genetic strategy to identify genes required for the binding of Yng1p to histones. Using the toxicity of YNG1 overexpression as a tool, we showed that Yng1p interacts with the amino-terminal tail of histone H3 and that this interaction can be disrupted by loss of lysine 4 methylation within this tail. Additionally, we mapped the region of Yng1p required for overexpression of toxicity to the PHD finger, showed that this region capable of binding lysine 4-methylated histone H3 in vitro, and demonstrated that mutations of the PHD finger that abolish binding in vitro are no longer toxic in vivo. These results identify a novel function for the Yng1p PHD finger in promoting stabilization of the NuA3 complex at chromatin through recognition of histone H3 lysine 4 methylation.


Assuntos
Histonas/metabolismo , Lisina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Animais , Cromatina/metabolismo , Histona Acetiltransferases , Histonas/genética , Metilação , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
11.
Genetics ; 210(3): 869-881, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30237209

RESUMO

The FACT (FAcilitates Chromatin Transactions) complex is a conserved complex that maintains chromatin structure on transcriptionally active genes. Consistent with this, FACT is enriched on highly expressed genes, but how it is targeted to these regions is unknown. In vitro, FACT binds destabilized nucleosomes, supporting the hypothesis that FACT is targeted to transcribed chromatin through recognition of RNA polymerase (RNAP)-disrupted nucleosomes. In this study, we used high-resolution analysis of FACT occupancy in Saccharomyces cerevisiae to test this hypothesis. We demonstrate that FACT interacts with nucleosomes in vivo and that its interaction with chromatin is dependent on transcription by any of the three RNAPs. Deep sequencing of micrococcal nuclease-resistant fragments shows that FACT-bound nucleosomes exhibit differing nuclease sensitivity compared to bulk chromatin, consistent with a modified nucleosome structure being the preferred ligand for this complex. Interestingly, a subset of FACT-bound nucleosomes may be "overlapping dinucleosomes," in which one histone octamer invades the ∼147-bp territory normally occupied by the adjacent nucleosome. While the differing nuclease sensitivity of FACT-bound nucleosomes could also be explained by the demonstrated ability of FACT to alter nucleosome structure, transcription inhibition restores nuclease resistance, suggesting that it is not due to FACT interaction alone. Collectively, these results are consistent with a model in which FACT is targeted to transcribed genes through preferential interaction with RNAP-disrupted nucleosomes.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Grupo de Alta Mobilidade/metabolismo , Nucleossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transcrição Gênica/genética , Fatores de Elongação da Transcrição/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Ligação Proteica
12.
Nat Commun ; 9(1): 1535, 2018 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-29670105

RESUMO

Within canonical eukaryotic nuclei, DNA is packaged with highly conserved histone proteins into nucleosomes, which facilitate DNA condensation and contribute to genomic regulation. Yet the dinoflagellates, a group of unicellular algae, are a striking exception to this otherwise universal feature as they have largely abandoned histones and acquired apparently viral-derived substitutes termed DVNPs (dinoflagellate-viral-nucleoproteins). Despite the magnitude of this transition, its evolutionary drivers remain unknown. Here, using Saccharomyces cerevisiae as a model, we show that DVNP impairs growth and antagonizes chromatin by localizing to histone binding sites, displacing nucleosomes, and impairing transcription. Furthermore, DVNP toxicity can be relieved through histone depletion and cells diminish their histones in response to DVNP expression suggesting that histone reduction could have been an adaptive response to these viral proteins. These findings provide insights into eukaryotic chromatin evolution and highlight the potential for horizontal gene transfer to drive the divergence of cellular systems.


Assuntos
Dinoflagellida/metabolismo , Dinoflagellida/virologia , Histonas/metabolismo , Nucleossomos/metabolismo , Proteínas Virais/metabolismo , Núcleo Celular/metabolismo , Cromatina/metabolismo , Imunoprecipitação da Cromatina , Biologia Computacional , DNA/química , Genoma , Microscopia de Fluorescência , Fenótipo , Saccharomyces cerevisiae/metabolismo , Transcrição Gênica , Proteínas Virais/genética
13.
Genetics ; 173(4): 1871-84, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16648643

RESUMO

The eukaryotic transcript elongation factor TFIIS is encoded by a nonessential gene, PPR2, in Saccharomyces cerevisiae. Disruptions of PPR2 are lethal in conjunction with a disruption in the nonessential gene TAF14/TFG3. While investigating which of the Taf14p-containing complexes may be responsible for the synthetic lethality between ppr2Delta and taf14Delta, we discovered genetic interactions between PPR2 and both TFG1 and TFG2 encoding the two larger subunits of the TFIIF complex that also contains Taf14p. Mutant alleles of tfg1 or tfg2 that render cells cold sensitive have improved growth at low temperature in the absence of TFIIS. Remarkably, the amino-terminal 130 amino acids of TFIIS, which are dispensable for the known in vitro and in vivo activities of TFIIS, are required to complement the lethality in taf14Delta ppr2Delta cells. Analyses of deletion and chimeric gene constructs of PPR2 implicate contributions by different regions of this N-terminal domain. No strong common phenotypes were identified for the ppr2Delta and taf14Delta strains, implying that the proteins are not functionally redundant. Instead, the absence of Taf14p in the cell appears to create a dependence on an undefined function of TFIIS mediated by its N-terminal region. This region of TFIIS is also at least in part responsible for the deleterious effect of TFIIS on tfg1 or tfg2 cold-sensitive cells. Together, these results suggest a physiologically relevant functional connection between TFIIS and TFIIF.


Assuntos
Proteínas de Ligação a DNA/genética , Complexos Multiproteicos/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Fator de Transcrição TFIID/genética , Fatores de Transcrição TFII/genética , Fatores de Elongação da Transcrição/genética , Proteínas de Ligação a DNA/metabolismo , Deleção de Genes , Teste de Complementação Genética/métodos , Complexos Multiproteicos/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/metabolismo , Fator de Transcrição TFIID/metabolismo , Fatores de Transcrição TFII/metabolismo , Fatores de Elongação da Transcrição/metabolismo
14.
Mol Cell Biol ; 22(6): 1615-25, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11865042

RESUMO

We have previously shown that the yeast SWI/SNF complex stimulates in vitro transcription from chromatin templates in an ATP-dependent manner. SWI/SNF function in this regard requires the presence of an activator with which it can interact directly, linking activator recruitment of SWI/SNF to transcriptional stimulation. In this study, we determine the SWI/SNF subunits that mediate its interaction with activators. Using a photo-cross-linking label transfer strategy, we show that the Snf5, Swi1, and Swi2/Snf2 subunits are contacted by the yeast acidic activators, Gcn4 and Hap4, in the context of the intact native SWI/SNF complex. In addition, we show that the same three subunits can interact individually with acidic activation domains, indicating that each subunit contributes to binding activators. Furthermore, mutations that reduce the activation potential of these activators also diminish its interaction with each of these SWI/SNF subunits. Thus, three distinct subunits of the SWI/SNF complex contribute to its interactions with activation domains.


Assuntos
Proteínas de Ciclo Celular , Proteínas Nucleares , Subunidades Proteicas , Proteínas de Saccharomyces cerevisiae/metabolismo , Ativação Transcricional/fisiologia , Ácidos/metabolismo , Adenosina Trifosfatases , Fator de Ligação a CCAAT/metabolismo , Proteínas Cromossômicas não Histona , Reagentes de Ligações Cruzadas/química , Reagentes de Ligações Cruzadas/farmacologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Fúngicas/metabolismo , Substâncias Macromoleculares , Fotoquímica , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/fisiologia , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína/fisiologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteína SMARCB1 , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
15.
Mol Cell Biol ; 22(14): 5047-53, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12077334

RESUMO

The mammalian ING1 gene encodes a tumor suppressor required for the function of p53. In this study we report a novel function for YNG1, a yeast homolog of ING1. Yng1p is a stable component of the NuA3 histone acetyltransferase complex, which contains Sas3p, the yeast homolog of the mammalian MOZ proto-oncogene product, as its catalytic subunit. Yng1p is required for NuA3 function in vivo but surprisingly is not required for the integrity of the complex. Instead, we find that Yng1p mediates the interaction of Sas3p with nucleosomes and is thus required for the ability of NuA3 to modify histone tails. These data, and the observations that other ING1 homologs are found in additional yeast complexes that posttranslationally modify histones, suggest that members of the ING1 class of proteins may have broad roles in enhancing or modifying the activities of chromatin-modifying complexes, thereby regulating their activities in transcription control.


Assuntos
Acetiltransferases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Acetiltransferases/química , Acetiltransferases/genética , Sequência de Aminoácidos , Genes Fúngicos , Histona Acetiltransferases , Histonas/metabolismo , Substâncias Macromoleculares , Dados de Sequência Molecular , Processamento de Proteína Pós-Traducional , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
17.
Genetics ; 205(3): 1113-1123, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28108585

RESUMO

Histone post-translational modifications (PTMs) alter chromatin structure by promoting the interaction of chromatin-modifying complexes with nucleosomes. The majority of chromatin-modifying complexes contain multiple domains that preferentially interact with modified histones, leading to speculation that these domains function in concert to target nucleosomes with distinct combinations of histone PTMs. In Saccharomyces cerevisiae, the NuA3 histone acetyltransferase complex contains three domains, the PHD finger in Yng1, the PWWP domain in Pdp3, and the YEATS domain in Taf14; which in vitro bind to H3K4 methylation, H3K36 methylation, and acetylated and crotonylated H3K9, respectively. While the in vitro binding has been well characterized, the relative in vivo contributions of these histone PTMs in targeting NuA3 is unknown. Here, through genome-wide colocalization and by mutational interrogation, we demonstrate that the PHD finger of Yng1, and the PWWP domain of Pdp3 independently target NuA3 to H3K4 and H3K36 methylated chromatin, respectively. In contrast, we find no evidence to support the YEATS domain of Taf14 functioning in NuA3 recruitment. Collectively our results suggest that the presence of multiple histone PTM binding domains within NuA3, rather than restricting it to nucleosomes containing distinct combinations of histone PTMs, can serve to increase the range of nucleosomes bound by the complex. Interestingly, however, the simple presence of NuA3 is insufficient to ensure acetylation of the associated nucleosomes, suggesting a secondary level of acetylation regulation that does not involve control of HAT-nucleosome interactions.


Assuntos
Histona Acetiltransferases/metabolismo , Histonas/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Acetilação , Histona Acetiltransferases/química , Histona Acetiltransferases/genética , Histonas/genética , Metilação , Nucleossomos/genética , Nucleossomos/metabolismo , Domínios Proteicos , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
18.
Genetics ; 207(1): 347-355, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28739661

RESUMO

Linker histones play a fundamental role in shaping chromatin structure, but how their interaction with chromatin is regulated is not well understood. In this study, we used a combination of genetic and genomic approaches to explore the regulation of linker histone binding in the yeast, Saccharomyces cerevisiae We found that increased expression of Hho1, the yeast linker histone, resulted in a severe growth defect, despite only subtle changes in chromatin structure. Further, this growth defect was rescued by mutations that increase histone acetylation. Consistent with this, genome-wide analysis of linker histone occupancy revealed an inverse correlation with histone tail acetylation in both yeast and mouse embryonic stem cells. Collectively, these results suggest that histone acetylation negatively regulates linker histone binding in S. cerevisiae and other organisms and provide important insight into how chromatin structure is regulated and maintained to both facilitate and repress transcription.


Assuntos
Histonas/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Acetilação , Animais , Cromatina/metabolismo , Células-Tronco Embrionárias/metabolismo , Histonas/genética , Camundongos , Ligação Proteica , Proteínas de Saccharomyces cerevisiae/genética
19.
Genetics ; 202(1): 341-9, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26534951

RESUMO

Histones are among the most conserved proteins known, but organismal differences do exist. In this study, we examined the contribution that divergent amino acids within histone H3 make to cell growth and chromatin structure in Saccharomyces cerevisiae. We show that, while amino acids that define histone H3.3 are dispensable for yeast growth, substitution of residues within the histone H3 α3 helix with human counterparts results in a severe growth defect. Mutations within this domain also result in altered nucleosome positioning, both in vivo and in vitro, which is accompanied by increased preference for nucleosome-favoring sequences. These results suggest that divergent amino acids within the histone H3 α3 helix play organismal roles in defining chromatin structure.


Assuntos
Cromatina/química , Histonas/química , Saccharomyces cerevisiae/ultraestrutura , Sequência de Aminoácidos , Substituição de Aminoácidos , Humanos , Dados de Sequência Molecular , Nucleossomos , Proteínas Recombinantes , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento
20.
Mol Cell Biol ; 32(17): 3479-85, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22751925

RESUMO

Histone H3 lysine 36 methylation is a ubiquitous hallmark of productive transcription elongation. Despite the prevalence of this histone posttranslational modification, however, the downstream functions triggered by this mark are not well understood. In this study, we showed that H3K36 methylation promoted the chromatin interaction of the Isw1b chromatin-remodeling complex in Saccharomyces cerevisiae. Similar to H3K36 methylation, Isw1b was found at the mid- and 3' regions of transcribed genes genome wide, and its presence at active genes was dependent on H3K36 methylation and the PWWP domain of the Isw1b subunit, Ioc4. Moreover, purified Isw1b preferentially interacted with recombinant nucleosomes that were methylated at lysine 36, and this interaction also required the Ioc4 PWWP domain. While H3K36 methylation has been shown to regulate the binding of numerous factors, this is the first time that it has been shown to facilitate targeting of a chromatin-remodeling complex.


Assuntos
Adenosina Trifosfatases/metabolismo , Cromatina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/análise , Sequência de Aminoácidos , Cromatina/química , Proteínas de Ligação a DNA/análise , Genes Fúngicos , Histonas/química , Lisina/química , Metilação , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/análise , Proteínas de Saccharomyces cerevisiae/química , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA