Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 148(18)2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34344024

RESUMO

How dermis maintains tissue homeostasis in cyclic growth and wounding is a fundamental unsolved question. Here, we study how dermal components of feather follicles undergo physiological (molting) and plucking injury-induced regeneration in chickens. Proliferation analyses reveal quiescent, transient-amplifying (TA) and long-term label-retaining dermal cell (LRDC) states. During the growth phase, LRDCs are activated to make new dermal components with distinct cellular flows. Dermal TA cells, enriched in the proximal follicle, generate both peripheral pulp, which extends distally to expand the epithelial-mesenchymal interactive interface for barb patterning, and central pulp, which provides nutrition. Entering the resting phase, LRDCs, accompanying collar bulge epidermal label-retaining cells, descend to the apical dermal papilla. In the next cycle, these apical dermal papilla LRDCs are re-activated to become new pulp progenitor TA cells. In the growth phase, lower dermal sheath can generate dermal papilla and pulp. Transcriptome analyses identify marker genes and highlight molecular signaling associated with dermal specification. We compare the cyclic topological changes with those of the hair follicle, a convergently evolved follicle configuration. This work presents a model for analyzing homeostasis and tissue remodeling of mesenchymal progenitors.


Assuntos
Galinhas/fisiologia , Derme/fisiologia , Células Epidérmicas/fisiologia , Plumas/fisiologia , Folículo Piloso/fisiologia , Regeneração/fisiologia , Células-Tronco/fisiologia , Animais , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Cabelo/fisiologia , Muda/fisiologia , Transdução de Sinais/fisiologia
2.
Int J Mol Sci ; 23(23)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36499650

RESUMO

Hyperphosphatemia can occur as a result of reduced phosphate (Pi) excretion in cases of kidney dysfunction, which can induce muscle wasting and suppress myogenic differentiation. Higher Pi suppresses myogenic differentiation and promotes muscle atrophy through canonical (oxidative stress-mediated) and noncanonical (p62-mediated) activation of nuclear factor erythroid 2-related factor 2 (Nrf2) signaling. However, the crosstalk between myogenin and Nrf2/p62 and potential drug(s) for the regulation of myogenin expression needed to be addressed. In this study, we further identified that myogenin may negatively regulate Nrf2 and p62 protein levels in the mouse C2C12 muscle cell line. In the drug screening analysis, we identified N-acetylcysteine, metformin, phenformin, berberine, 4-chloro-3-ethylphenol, cilostazol, and cilomilast as ameliorating the induction of Nrf2 and p62 expression and reduction in myogenin expression that occur due to high Pi. We further elucidated that doxorubicin and hydrogen peroxide reduced the amount of myogenin protein mediated through the Kelch-like ECH-associated protein 1/Nrf2 pathway, differently from the mechanism of high Pi. The dual functional roles of L-ascorbic acid (L-AA) were found to be dependent on the working concentration, where concentrations below 1 mM L-AA reversed the effect of high Pi on myogenin and those above 1 mM L-AA had a similar effect of high Pi on myogenin when used alone. L-AA exacerbated the effect of hydrogen peroxide on myogenin protein and had no further effect of doxorubicin on myogenin protein. In summary, our results further our understanding of the crosstalk between myogenin and Nrf2, with the identification and verification of several potential drugs that can be applied in rescuing the decline of myogenin due to high Pi in muscle cells.


Assuntos
Peróxido de Hidrogênio , Fator 2 Relacionado a NF-E2 , Animais , Camundongos , Ácido Ascórbico/farmacologia , Doxorrubicina/farmacologia , Peróxido de Hidrogênio/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Atrofia Muscular/metabolismo , Miogenina/genética , Miogenina/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Proteína Sequestossoma-1/metabolismo , Transdução de Sinais/fisiologia
3.
J Biomed Sci ; 25(1): 81, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30442142

RESUMO

BACKGROUND: Metformin is the most commonly used first-line medicine for type II diabetes mellitus. Acting via AMP-activated protein kinase, it has been used for more than 60 years and has an outstanding safety record. Metformin also offers protection against cancer, but its precise mechanisms remain unclear. METHODS: We first examined the cytotoxic effects of metformin in the HeLa human cervical carcinoma and ZR-75-1 breast cancer cell lines using assays of cell viability, cleaved poly-ADP-ribose polymerase, and Annexin V-fluorescein isothiocyanate apoptosis, as well as flow cytometric analyses of the cell cycle profile and reactive oxygen species (ROS). We later clarified the effect of metformin on p53 protein stability using transient transfection and cycloheximide chase analyses. RESULTS: We observed that metformin represses cell cycle progression, thereby inducing subG1 populations, and had induced apoptosis through downregulation of p53 protein and a target gene, differentiated embryo chondrocyte 1 (DEC1). In addition, metformin increased intracellular ROS levels, but N-acetyl cysteine, a ROS scavenger, failed to suppress metformin-induced apoptosis. Further results showed that metformin disrupted the electron transport chain and collapsed the mitochondrial membrane potential, which may be the cause of the elevated ROS levels. Examination of the mechanisms underlying metformin-induced HeLa cell death revealed that reduced stability of p53 in metformin-treated cells leads to decreases in DEC1 and induction of apoptosis. CONCLUSION: The involvement of DEC1 provides new insight into the positive or negative functional roles of p53 in the metformin-induced cytotoxicity in tumor cells.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Regulação para Baixo/efeitos dos fármacos , Proteínas de Homeodomínio/genética , Metformina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Linhagem Celular Tumoral , Células HeLa , Proteínas de Homeodomínio/metabolismo , Humanos , Hipoglicemiantes/farmacologia , Mitocôndrias/fisiologia , Proteína Supressora de Tumor p53/genética
4.
Cells Dev ; : 203922, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38688358

RESUMO

A vasculature network supplies blood to feather buds in the developing skin. Does the vasculature network during early skin development form by sequential sprouting from the central vasculature or does local vasculogenesis occur first that then connect with the central vascular tree? Using transgenic Japanese quail Tg(TIE1p.H2B-eYFP), we observe that vascular progenitor cells appear after feather primordia formation. The vasculature then radiates out from each bud and connects with primordial vessels from neighboring buds. Later they connect with the central vasculature. Epithelial-mesenchymal recombination shows local vasculature is patterned by the epithelium, which expresses FGF2 and VEGF. Perturbing noggin expression leads to abnormal vascularization. To study endothelial origin, we compare transcriptomes of TIE1p.H2B-eYFP+ cells collected from the skin and aorta. Endothelial cells from the skin more closely resemble skin dermal cells than those from the aorta. The results show developing chicken skin vasculature is assembled by (1) physiological vasculogenesis from the peripheral tissue, and (2) subsequently connects with the central vasculature. The work implies mesenchymal plasticity and convergent differentiation play significant roles in development, and such processes may be re-activated during adult regeneration. SUMMARY STATEMENT: We show the vasculature network in the chicken skin is assembled using existing feather buds as the template, and endothelia are derived from local bud dermis and central vasculature.

5.
G3 (Bethesda) ; 11(2)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33704432

RESUMO

The Crest mutation in chicken shows incomplete dominance and causes a spectacular phenotype in which the small feathers normally present on the head are replaced by much larger feathers normally present only in dorsal skin. Using whole-genome sequencing, we show that the crest phenotype is caused by a 197 bp duplication of an evolutionarily conserved sequence located in the intron of HOXC10 on chromosome 33. A diagnostic test showed that the duplication was present in all 54 crested chickens representing eight breeds and absent from all 433 non-crested chickens representing 214 populations. The mutation causes ectopic expression of at least five closely linked HOXC genes, including HOXC10, in cranial skin of crested chickens. The result is consistent with the interpretation that the crest feathers are caused by an altered body region identity. The upregulated HOXC gene expression is expanded to skull tissue of Polish chickens showing a large crest often associated with cerebral hernia, but not in Silkie chickens characterized by a small crest, both homozygous for the duplication. Thus, the 197 bp duplication is required for the development of a large crest and susceptibility to cerebral hernia because only crested chicken show this malformation. However, this mutation is not sufficient to cause herniation because this malformation is not present in breeds with a small crest, like Silkie chickens.


Assuntos
Galinhas , Plumas , Proteínas de Homeodomínio/genética , Animais , Galinhas/genética , Duplicação Gênica , Homozigoto , Íntrons , Fenótipo
6.
Cancer Manag Res ; 11: 6567-6579, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31410055

RESUMO

BACKGROUND: Differentiated embryo chondrocyte 1 (DEC1) is a helix-loop-helix transcription factor that directly binds to the class B E-box in target genes. DEC1 exerts both pro-survival and pro-apoptotic effects in a cell- and tissue-dependent manner. Its actions play role the progression of cancer remains unclear. METHODS: We first examined the functional roles of DEC1 using the transient promoter reporter assay. Then, the knockdown of DEC1 expression was performed with the short hairpin RNA strategy in HeLa and A2058 cancer cell lines to check the cell cycle and mitochondrial function profile using the flow cytometry and Seahorse assays. We later clarified the role of DEC1 in the tumorigenesis using the colony formation, anchorage-independent growth assay, and cellular proliferation analysis. RESULTS: In the present study, we tested two guanide-containing drugs, metformin and phenformin, and found that both exhibit cytotoxicity against HeLa cervical carcinoma and A2058 melanoma cells. This effect was mediated, at least in part, through activation of the AMPK pathway; degradation of important cellular proteins, such as DEC1 and p53; and suppression of mitochondrial function, colony formation, and anchorage-independent cell proliferation. Our results further suggest that the cytotoxicity of metformin and phenformin reflect the impact of the repressive actions of DEC1 on gene expression, including DEC1 itself. This in turn suppresses both anchorage-independent growth and cell proliferation. CONCLUSION: These findings provide several lines of evidence suggesting that DEC1 activity contributes to tumorigenicity and that the antitumor properties of biguanides reflect their ability to inhibit DEC1 functions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA