Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biomedicines ; 11(6)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37371627

RESUMO

Human respiratory syncytial virus (hRSV) affects more than 33 million people each year, but there are currently no effective drugs or vaccines approved. In this study, we first constructed a candidate host-pathogen interspecies genome-wide genetic and epigenetic network (HPI-GWGEN) via big-data mining. Then, we employed reversed dynamic methods via two-side host-pathogen RNA-seq time-profile data to prune false positives in candidate HPI-GWGEN to obtain the real HPI-GWGEN. With the aid of principal-network projection and the annotation of KEGG pathways, we can extract core signaling pathways during hRSV infection to investigate the pathogenic mechanism of hRSV infection and select the corresponding significant biomarkers as drug targets, i.e., TRAF6, STAT3, IRF3, TYK2, and MAVS. Finally, in order to discover potential molecular drugs, we trained a DNN-based DTI model by drug-target interaction databases to predict candidate molecular drugs for these drug targets. After screening these candidate molecular drugs by three drug design specifications simultaneously, i.e., regulation ability, sensitivity, and toxicity. We finally selected acitretin, RS-67333, and phenformin to combine as a potential multimolecule drug for the therapeutic treatment of hRSV infection.

2.
ACS Appl Mater Interfaces ; 14(17): 19795-19805, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35417120

RESUMO

Highly sensitive X-ray detection is crucial in, for example, medical imaging and secure inspection. Halide perovskite X-ray detectors are promising candidates for detecting highly energetic radiation. In this report, we describe vacuum-deposited Cs-based perovskite X-ray detectors possessing a p-i-n architecture. Because of the built-in potential of the p-i-n structure, these perovskite X-ray detectors were capable of efficient charge collection and displayed an exceptionally high X-ray sensitivity (1.2 C Gyair-1 cm-3) under self-powered, zero-bias conditions. We ascribe the outstanding X-ray sensitivity of the vacuum-deposited CsPbI2Br devices to their prominent charge carrier mobility. Moreover, these devices functioned with a lowest detection limit of 25.69 nGyair s-1 and possessed excellent stability after exposure to over 3000 times the total dose of a chest X-ray image. For comparison, we also prepared traditional spin-coated CH3NH3-based perovskite devices having a similar device architecture. Their volume sensitivity was only one-fifth of that of the vacuum-deposited CsPbI2Br devices. Thus, all-vacuum deposition appears to be a new strategy for developing perovskite X-ray detectors; with a high practical deposition rate, a balance can be reached between the thickness of the absorbing layer and the fabrication time.

3.
ACS Nano ; 15(7): 11358-11368, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-33729770

RESUMO

Although colloidal lead halide perovskite quantum dots (PQDs) exhibit desirable emitter characteristics with high quantum yields and narrow bandwidths, instability has limited their applications in devices. In this paper, we describe spray-synthesized CsPbI3 PQD quantum emitters displaying strong photon antibunching and high brightness at room temperature and stable performance under continuous excitation with a high-intensity laser for more than 24 h. Our PQDs provided high single-photon emission rates, exceeding 9 × 106 count/s, after excluding multiexciton emissions and strong photon antibunching, as confirmed by low values of the second-order correlation function g(2)(0) (reaching 0.021 and 0.061 for the best and average PQD performance, respectively). With such high brightness and stability, we applied our PQDs as quantum random number generators, which demonstrably passed all of the National Institute of Standards and Technology's randomness tests. Intriguingly, all of the PQDs exhibited self-healing behavior and restored their PL intensities to greater than half of their initial values after excitation at extremely high intensity. Half of the PQDs even recovered almost all of their initial PL intensity. The robust properties of these spray-synthesized PQDs resulted from high crystallinity and good ligand encapsulation. Our results suggest that spray-synthesized PQDs have great potential for use in future quantum technologies (e.g., quantum communication, quantum cryptography, and quantum computing).

4.
ACS Nano ; 14(9): 11670-11676, 2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32701270

RESUMO

Lead halide perovskite materials have recently received considerable attention for achieving an economic and tunable laser owing to their solution-processable feature and promising optical properties. However, most reported perovskite-based lasers operate with a large lasing-mode volume, resulting in a high lasing threshold due to the inefficient coupling between the optical gain medium and cavity. Here, we demonstrate a continuous-wave nanolasing from a single lead halide perovskite (CsPbBr3) quantum dot (PQD) in a plasmonic gap-mode nanocavity with an ultralow threshold of 1.9 Wcm-2 under 120 K. The calculated ultrasmall mode volume (∼0.002 λ3) with a z-polarized dipole and the significantly large Purcell enhancement at the corner of the nanocavity inside the gap dramatically enhance the light-matter interaction in the nanocavity, thus facilitating lasing. The demonstration of PQD nanolasing with an ultralow-threshold provides an approach for realizing on-chip electrically driven lasing and integration into on-chip plasmonic circuitry for ultrafast optical communication and quantum information processing.

5.
ACS Appl Mater Interfaces ; 11(50): 47054-47062, 2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31762264

RESUMO

A sensitive and fast ultraviolet (UV) photodetector is strongly desirable because of its wide range of applications in chemical/biological sensing and imaging. CsPbCl3-based thin film photodetectors have not been constructed previously owing to their extremely poor precursor solubility; however, vapor deposition allows for thin film fabrication without the limitation of solubility. Therefore, this work is the first to demonstrate the optoelectronic properties of inorganic CsPbCl3 perovskite thin films and UV photodiodes using all-vacuum deposition. The perovskites annealed at 120 °C exhibited outstanding performance, including a notable external quantum efficiency value of 797.1% with an applied bias of -2 V, an outstanding detectivity of 1.4 × 1013 Jones, a short response time as low as ∼ 50 µs, and a large linear dynamic range of up to 136 dB. CsPbCl3 thin films manufactured by this vacuum-deposited approach were also found to be moisture-resistant and demonstrated high durability. The devices maintained excellent performance and demonstrated less than 10% degradation after 30 days. Thus, thin film visible-blind UV detectors can potentially be used in transparent smart displays, window-integrated electronic circuits, and sensor applications.

6.
Adv Mater ; 30(7)2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29271524

RESUMO

In this study, a novel perovskite quantum dot (QD) spray-synthesis method is developed by combining traditional perovskite QD synthesis with the technique of spray pyrolysis. By utilizing this new technique, the synthesis of cubic-shaped perovskite QDs with a homogeneous size of 14 nm is demonstrated, which shows an unprecedented stable absolute photoluminescence quantum yield ≈100% in the solution and even in the solid-state neat film. The highly emissive thin films are integrated with light emission devices (LEDs) and organic light emission displays (OLEDs). The color conversion type QD-LED (ccQD-LED) hybrid devices exhibit an extremely saturated green emission, excellent external quantum efficiency of 28.1%, power efficiency of 121 lm W-1 , and extraordinary forward-direction luminescence of 8 500 000 cd m-2 . The conceptual ccQD-OLED hybrid display also successfully demonstrates high-definition still images and moving pictures with a 119% National Television System Committee 1931 color gamut and 123% Digital Cinema Initiatives-P3 color gamut. These very-stable, ultra-bright perovskite QDs have the properties necessary for a variety of useful applications in optoelectronics.

7.
ACS Appl Mater Interfaces ; 9(46): 40516-40522, 2017 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-29076335

RESUMO

In this work, a sequential vacuum deposition process of bright, highly crystalline, and smooth methylammonium lead bromide and phenethylammonium lead bromide perovskite thin films are investigated and the first vacuum-deposited organometallic halide perovskite light-emitting devices (PeLEDs) are demonstrated. Exceptionally low refractive indices and extinction coefficients in the emission wavelength range are obtained for these films, which contributed to a high light out-coupling efficiency of the PeLEDs. By utilizing these perovskite thin films as emission layers, the vacuum-deposited PeLEDs exhibit a very narrow saturated green electroluminescence at 531 nm, with a spectral full width at half-maximum bandwidth of 18.6 nm, a promising brightness of up to 6200 cd/m2, a current efficiency of 1.3 cd/A, and an external quantum efficiency of 0.36%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA