Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Arch Pharm (Weinheim) ; 352(12): e1900095, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31544284

RESUMO

A series of new N-aryl/aralkyl derivatives of 2-methyl-2-{5-(4-chlorophenyl)-1,3,4-oxadiazole-2ylthiol}acetamide were synthesized by successive conversions of 4-chlorobenzoic acid (a) into ethyl 4-chlorobenzoate (1), 4-chlorobenzoylhydrazide (2) and 5-(4-chlorophenyl)-1,3,4-oxadiazole-2-thiol (3), respectively. The required array of compounds (6a-n) was obtained by the reaction of 1,3,4-oxadiazole (3) with various electrophiles (5a-n) in the presence of DMF (N,N-dimethylformamide) and sodium hydroxide at room temperature. The structural determination of these compounds was done by infrared, 1 H-NMR (nuclear magnetic resonance), 13 C-NMR, electron ionization mass spectrometry, and high-resolution electron ionization mass spectrometry analyses. All compounds were evaluated for their α-glucosidase inhibitory potential. Compounds 6a, 6c-e, 6g, and 6i were found to be promising inhibitors of α-glucosidase with IC50 values of 81.72 ± 1.18, 52.73 ± 1.16, 62.62 ± 1.15, 56.34 ± 1.17, 86.35 ± 1.17, 52.63 ± 1.16 µM, respectively. Molecular modeling and ADME (absorption, distribution, metabolism, excretion) predictions supported the findings. The current synthesized library of compounds was achieved by utilizing very common raw materials in such a way that the synthesized compounds may prove to be promising drug leads.


Assuntos
Técnicas de Química Sintética/métodos , Desenho de Fármacos , Inibidores de Glicosídeo Hidrolases/síntese química , Oxidiazóis/síntese química , alfa-Glucosidases/metabolismo , Simulação por Computador , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/farmacologia , Simulação de Acoplamento Molecular , Estrutura Molecular , Oxidiazóis/química , Oxidiazóis/farmacologia , Saccharomyces cerevisiae/enzimologia
2.
Acta Chim Slov ; 68(3): 667-682, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34897536

RESUMO

The activation of caspases is central to apoptotic process in living systems. Defects in apoptosis have been implicated with carcinogenesis. Need to develop smart agents capable of inducing apoptosis in tumor cells is obvious. With this motive, diversity oriented synthesis of 1-benzylpyrrolidin-3-ol analogues was envisaged. The multi component Ugi reaction synthesized library of electronically diverse analogues was explored for cytotoxic propensity towards a panel of human cancer cell lines at 10 µM. The lead compounds exhibit a selective cytotoxicity towards HL-60 cells as compared to cell lines derived from solid tumors. Besides, their milder cytotoxic effect on non-cancerous cell lines reaffirm their selective action towards cancer cells only. The lead molecules were tested for their ability to target caspase-3, as a vital protease triggering apoptosis. The lead compounds were observed to induce apoptosis in HL-60 cells around 10 µM concentration. The lead compounds exhibited various non-covalent supra type interactions with caspase-3 key residues around the active site. The binding ability of lead compounds with caspase-3 was studied via molecular docking and molecular dynamic (MD) simulations. MD simulations indicated the stability of compound-caspase-3 complex throughout the 50 ns simulation run. The stability and bio-availability of the lead compounds under physiological conditions was assessed by their interaction with Bovine Serum Albumin (BSA) as model protein. BSA interactions of lead compounds were studied by various bio-physical methods and further substantiated with in silico MD simulations.


Assuntos
Antineoplásicos/farmacologia , Caspase 3/metabolismo , Ativadores de Enzimas/farmacologia , Pirrolidinas/farmacologia , Animais , Antineoplásicos/metabolismo , Apoptose/efeitos dos fármacos , Bovinos , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Ativadores de Enzimas/metabolismo , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Ligação Proteica , Pirrolidinas/metabolismo , Soroalbumina Bovina/metabolismo , Bibliotecas de Moléculas Pequenas/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA