Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Sci (China) ; 138: 561-571, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38135420

RESUMO

To gain a comprehensive understanding of sources and health risks of trace elements in an area of China with high population densities and low PM2.5 concentrations, 15 trace elements (Al, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Sn, Ba, Pb) in PM2.5 were monitored from December 2020 to November 2021 in a representative city, Xiamen. The concentrations of trace elements in Xiamen displayed an obvious seasonal variation and were dominated by K, Fe, Al, Ca and Zn. Based on Positive Matrix Factorization analysis, source appointment revealed that the major sources of trace elements in Xiamen were traffic, dust, biomass and firework combustion, industrial manufacture and shipping emission. According to health risk assessment combined with the source appointment results, it indicated that the average noncarcinogenic risk was below the threshold and cancer risk of four hazardous metals (Cr, Ni, As, Pb) exceeded the threshold (10-6). Traffic-related source had almost half amount of contribution to the health risk induced by PM2.5-bound trace elements. During the dust transport period or Spring Festival period, the health risks exceeded an acceptable threshold even an order of magnitude higher, suggesting that the serious health risks still existed in low PM2.5 environment at certain times. Health risk assessment reminded that the health risk reduction in PM2.5 at southeastern China should prioritize traffic-related hazardous trace elements and highlighted the importance of controlling vehicles emissions in the future.


Assuntos
Poluentes Atmosféricos , Oligoelementos , Material Particulado/análise , Poluentes Atmosféricos/análise , Oligoelementos/análise , Chumbo/análise , Monitoramento Ambiental , Poeira/análise , China
2.
Nanomaterials (Basel) ; 14(15)2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39120371

RESUMO

Organic-inorganic hybrid perovskite quantum dots (QDs) have garnered significant research interest owing to their unique structure and optoelectronic properties. However, their poor optical performance in ambient air remains a significant limitation, hindering their advancement and practical applications. Herein, three amino acids (valine, threonine and cysteine) were chosen as surface ligands to successfully prepare highly luminescent CH3NH3PbBr3 (MAPbBr3) QDs. The morphology and XRD results suggest that the inclusion of the amino acid ligands enhances the octahedral structure of the QD solutions. Moreover, the observed blue-shifted phenomenon in the photoluminescence (PL) aligns closely with the blue-shifted phenomenon observed in the ultraviolet-visible (UV-Vis) absorption spectra, attributed to the quantum confinement effect. The time-resolved spectra indicated that the introduction of the amino acid ligands successfully suppressed non-radiative recombination, consequently extending the fluorescence lifetime of the MAPbBr3 QDs. The photoluminescence quantum yields (PLQYs) of the amino acid-treated MAPbBr3 QDs are increased by 94.8%. The color rendering index (CRI) of the produced white light-emitting diode (WLED) is 85.3, with a correlated color temperature (CCT) of 5453 K. Our study presents a novel approach to enhancing the performance of perovskite QDs by employing specially designed surface ligands for surface passivation.

3.
Environ Pollut ; 359: 124757, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39153537

RESUMO

In the troposphere, ozone (O3) formation can be limited by NOx, VOCs, or both, complicating efforts to reduce O3 by controlling its precursors. This study used formaldehyde (HCHO) data and nitrogen dioxide (NO2) data from the Ozone Monitoring Instrument (OMI) to analyze O3 formation sensitivity in Fujian from 2012 to 2021. Over the past decade, an 8.7% reduction in NO2 VCDs and a 9.91% increase in HCHO VCDs were observed. Due to differences in the primary driving factors, HCHO VCDs exhibit a characteristic seasonal pattern with higher in summer and lower in winter, whereas NO2 VCDs show the opposite trend. O3 formation chemistry was accurately diagnosed by combining satellite-based data and ground-based O3 data. A new threshold value (3.3-4.6) was derived to determine the transition from VOC-limited to NOx-limited O3 formation regimes. Results showed that O3 sensitivity exhibited pronounced seasonal variations. The VOC-limited regime predominates throughout the entire Fujian region in winter, whereas it occupies only 5% of the area in summer. A VOC-limited region was found widely across Fujian on an annual average, but it decreased by 24% over 10 years. Transitional areas experienced a 19% increase. In two natural emission reduction cases (reductions during the Chinese Lunar New Year holiday and reductions in weekend traffic emissions compared to weekdays), ground-level O3 effectively captured the impacts of sensitivity changes. The impact suggests that when Fujian is in the VOC control region, a significant reduction in NOx, without effective VOC control, might lead to an O3 increase. The importance of controlling VOC emissions is highlighted in Fujian. This study enhances the understanding of O3 formation regimes in southeastern China, which is crucial for developing O3 prevention and control strategies.


Assuntos
Poluentes Atmosféricos , Monitoramento Ambiental , Ozônio , Estações do Ano , Compostos Orgânicos Voláteis , China , Ozônio/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Compostos Orgânicos Voláteis/análise , Dióxido de Nitrogênio/análise , Poluição do Ar/estatística & dados numéricos , Formaldeído/análise
4.
Environ Pollut ; 356: 124355, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38871170

RESUMO

Due to the significance of atmospheric HONO as a reservoir for radicals and the presence of substantial unknown sources of HONO, there is a pressing need for accurate and consistent measurement of its concentration. In this study, we compared the measurements obtained from the monitor for aerosols and gases in ambient air (MARGA) based on wet chemical method with those from the incoherent broadband cavity-enhanced absorption spectroscopy (IBBCEAS) based on optical method to assess the suitability of the MARGA instrument for accurate HONO detection. The diurnal patterns obtained by the two instruments are similar, with peaks at 8 a.m. and lows at 5 p.m. Over the course of the observation period, it was often observed that HONO concentrations recorded by the MARGA instrument consistently exceeded those obtained through the IBBCEAS technique, accounting for approximately 91.33% of the total observation time. Throughout the entire observation period, the R2 value between the two instruments was 0.49, indicating relatively good correlation. However, with a slope of only 0.27, it suggests poor agreement between the two instruments. Furthermore, the R2 and slopes between the two instruments vary with the seasons and day-night. The larger the quartile values of NO2, NH3, and BC, the greater the slopes of both MARGA and IBBCEAS instruments, and the higher the concentrations of NO2, NH3, and BC (indicator of semivolatile oxidizable hydrocarbons), the greater the differences between the two instruments, all indicating that NH3 may promote the reaction of NO2 with semivolatile oxidizable hydrocarbons to produce HONO. The O3 with its strong oxidizing properties may cause underestimation in the MARGA instrument by oxidizing NO2- to NO3- in the absorbing solution. It is challenging to derive a universal correction formula due to the interference of various chemical substances. Hence, MARGA should not be used for HONO research in the future.


Assuntos
Poluentes Atmosféricos , Monitoramento Ambiental , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Monitoramento Ambiental/instrumentação , Atmosfera/química , Cidades , Aerossóis/análise , Estações do Ano , Ácido Nitroso/análise
5.
Sci Total Environ ; 891: 164477, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37257606

RESUMO

Two ozone (O3) processes, summer episode dominated by local production and autumn episode dominated by regional transport, were chosen to investigate the role of HONO in different pollution processes. Meteorological conditions, diurnal variation of O3, potential source contribution factor (PSCF) analysis, concentration weighted trajectory (CWT) models, and the distribution of the eight-hour maximum values of O3 on mainland China all prove that summer O3 was mainly locally generated while autumn O3 episode was more susceptible to regional transport. The gaps between observations and simulation results with the default HONO chemistry in Master Chemical Mechanism (MCM) of Observation Based Model (OBM) were higher in summer episode (0.58 ppb) than autumn episode (0.37 ppb). Although we implemented nine additional sources in the model to revise the HONO chemistry, the simulated values were still lower than the observed values. HONO promoted O3 production by accelerating the reaction of HO2 + NO and RO2 + NO, and promoted loss of O3 by the reaction of OH + NO2 and RO2 + NO2. The net production rate of O3 with HONO constraint increased by 28.50 % in summer and 22.43 % in autumn, which also indicated that HONO played more important role in the O3 production in summer. The difference of NOx of daily RIR between the cases with and without HONO constraint was higher in summer O3 episode (0.15 %/%) than that in autumn O3 episode (0.09 %/%), the same as to VOCs with -0.20 %/% in summer O3 episode and - 0.14 %/% in autumn O3 episode, which indicated that the presence or absence of the HONO constraint has a greater impact on the RIR value in the case of dominant local generation. In brief, the O3 sensitivity would be more favorable for VOCs without HONO constrained in the model, which would inevitably mislead policy makers to develop efficient policies to control O3 pollution.

6.
Sci Total Environ ; 826: 154208, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35240183

RESUMO

New particle formation (NPF) has a great impact on regional and global climate, air quality and human health. This study uses a Scanning Mobility Particle Sizer (SMPS) for simultaneous measurement of particle number size distribution (PNSD) in wintertime to investigate NPF in the coastal city of Xiamen. The mean particle number concentration, surface area concentration and volume concentration were 7.25 × 103 cm-3, 152.54 µm2 cm-3, and 4.03 µm3 cm-3, respectively. Particle number concentration was mainly influenced by the nucleation mode and the Aitken mode, whereas the main contributor to particle surface area concentration and volume concentration was accumulation mode particles. The frequency of NPF events occurred was around 41.4% in December 2019. The typical growth rates of new formed particles were 1.41-2.54 nm h-1, and the observed formation rates were 0.49-1.43 cm-3 s-1. A comparative analysis of conditions between event and non-event days was performed. The results emphasized that air temperature, UV radiation and relative humidity were the most decisive meteorological factors, and NPF events usually occurred under clean atmospheric conditions with low PM concentrations. Although condensation sink was high when NPF event occurred, the level of SO2 and O3 concentration was also high.


Assuntos
Poluentes Atmosféricos , Material Particulado , Aerossóis/análise , Poluentes Atmosféricos/análise , China , Monitoramento Ambiental , Humanos , Tamanho da Partícula , Material Particulado/análise
7.
Sci Total Environ ; 719: 137493, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32120104

RESUMO

Peroxyacetyl nitrate (PAN) can effectively indicate photochemical pollution, and also plays a vital role in regional oxidant balance. One-year continuous monitoring of PAN in a coastal city of southeastern China was investigated. The mean concentration of PAN in winter (0.64 ppb) was close to that in autumn (0.73 ppb), indicating that photochemical pollution was still non-negligible in the cold season. The peak occurrence time between O3 and PAN had a delay of 1-2 h in four seasons, due to the rapid decomposition rate of PAN in midday. Emission sources of the precursors are located to the south of the monitoring site, so high concentrations of PAN and O3 are frequently observed under southerly wind conditions. The air mass with low concentration of PAN (0.22-0.34 ppb) and O3 (18.17-23.67 ppb) originated from the ocean with less anthropogenic air pollutants. Continental air mass with high PAN concentration might be related to the contribution of heterogeneous reactions of PM2.5 to the promotion of PAN formation. In the polluted case, PAN concentration was often higher than 1.0 ppb and reached the peak of 4.2 ppb, suggesting the influence of photochemical reactions and local accumulation. High concentrations of HONO and sufficient ultraviolet radiation might be the main factors for rapid photochemical production of PAN. Besides, the lifetime of PAN in winter under the condition of high PM2.5 concentration (≥35 µg·m-3) was up to 3.246 days. This study provided insights into photochemical mechanism and pollution process in a coastal city of southeastern China.

8.
Sci Total Environ ; 707: 136194, 2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-31972916

RESUMO

The quasi-stationary front is a significant weather system which influences East Asia in spring. The air quality deteriorated along with the moist circumstance when the quasi stationary front dominated the area. Surface meteorological parameters, air pollutants and PM2.5 chemical species were observed during the air pollution episode. Liquid water content and aerosol acidity were calculated by thermodynamic model in order to investigate heterogeneous/aqueous reactions for secondary aerosol formation. The episode was divided into four stages based on quasi-stationary front influences. Hourly PM2.5 concentrations were up to 150.2 µg·m-3 while O3 concentrations reached the minimum value of 1.27 µg·m-3, indicating that the precursor gas NOx participated in the different reactions during the episode. Nitrate proportion of water-soluble inorganic ions was 42.2%. High concentrations of secondary inorganic aerosol ions and the high sulfur oxidation ratio (SOR) and nitrogen oxidation ratio (NOR) indicated the increasing conversions from SO2 and NOx to their corresponding particulate phases. Ratios of [NO3-]/[SO42-] and [NH4+]/[SO42-] in the four stages declared that nitrate formation preferred heterogeneous conversions. A series of liquid water content (LWC) fitting equations between relative humidity and inorganic ions were conducted to verify heterogeneous aqueous reactions of NO2 and secondary nitrate formation. The results of this study highlighted the significance of LWC and chemical reactions associated with acidity during the specific synoptic situation in South China.

9.
Sci Total Environ ; 692: 1135-1145, 2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31539945

RESUMO

To investigate the impact of the Western Pacific subtropical high (WPSH) on the air pollution episode of Xiamen, a coastal city in Southeastern China, this study focused on formation processes and influencing mechanisms of an air pollution episode from 17th to 23rd September 2017. The results showed that the WPSH fluctuated in this period and intensified this air pollution with local emissions. The episode was divided into four stages according to WPSH center locations to diagnose the air pollution. Visibility declined below 10 km twice while fine particulate matte (PM2.5) concentration was up to 89.05 µg/m3 during this episode. As a consequence of high temperature (28.33 ±â€¯1.25 °C) resulted from WPSH, atmospheric oxidation at high level (140.81 ±â€¯56.49 µg/m3) was the driving force of secondary aerosols generations. Oxidation determined photo-chemical reactions with the pathways of gas-phase and heterogeneous formation. Sulfate was formed from gas-phase oxidation by SO2 in daytime while heterogeneous reaction occurred at night. Nitrate generation was dominated by not only excess ammonium but also intense oxidation. Reconstruction light extinction results coupling with trajectories revealed that (NH4)2SO4, NH4NO3 and OM were the priority factors to the reduction of atmospheric visibility. These findings provided new insights of air pollution episode diagnosis and indicative function of WPSH impacts on local air quality in Southeast China.

10.
Sci Total Environ ; 653: 496-503, 2019 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-30414579

RESUMO

Secondary organic aerosol (SOA) plays an important role in global climate change and air quality. PM2.5 (particles with aerodynamic diameters ≤2.5 µm) samples were collected at a mountainous forest site (Mt. Wuyi) in southeastern China between November 2015 and July 2016. Fourteen PM2.5-bound SOA tracers, including isoprene, α/ß­pinene, ß­caryophyllene, and toluene, were measured using the gas-chromatography-mass-spectrometry method. The total concentrations of the isoprene, α/ß­pinene, ß­caryophyllene, and toluene SOA tracers were 45.28 ±â€¯65.52, 30.66 ±â€¯24.44, 5.99 ±â€¯7.25, and 0.62 ±â€¯0.72 ng m-3, respectively. The isoprene SOA tracers exhibited the highest concentration (145.97 ±â€¯53.78 ng m-3) and accounted for 76 ±â€¯9% of the total concentration of SOA tracers in summer. In fall-winter, the mass fraction of 2­methylglyceric acid was significantly enhanced because of the lower temperature and higher NOx level. As later-generation products of α/ß­pinene tracers, high proportions of 3­hydroxyglutaric acid and 3­methyl­1,2,3 butanetricarboxylic acid were observed on Mt. Wuyi, suggesting that the aerosols were highly oxidized. Biomass burning events affected by local and regional sources were identified by analyzing typical SOA tracers. Significant positive correlation (R2 = 0.74) was found between the ß­caryophyllene tracer and levoglucosan. The average concentration of secondary organic carbon (SOC) as estimated from SOA tracers was 1.46 µgC m-3. The isoprene SOC accounted for 70% of the total SOC in summer, whereas the ß­caryophyllene SOC was the predominant component in winter. Meanwhile, the estimated toluene SOC accounted for 11.6% of the total SOC during the study period. The study helps understanding the characteristics and the formation of SOA in a mountainous forest area of southeastern China.

11.
Sci Total Environ ; 657: 1491-1500, 2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30677915

RESUMO

Volatile organic compounds (VOCs) are important trace gases in the atmosphere, affecting air quality (e.g. ozone and secondary organic aerosol formation) and human health. To understand the emission, transport and chemistry of VOCs in the southeast of China (Fujian Province), a campaign was conducted in summer and winter of 2016 at three contrasting sites in close proximity. One measurement site (Mt. Wuyi) is a mountainous forest site (1139 m a.s.l.) located in a natural reserve, while the other two sites (Fuzhou, Xiamen) are coastal urban sites with high population and vehicle density. Comparison of VOCs at these three sites provides a valuable perspective on regional air pollution and transport. Many of the measured alkanes, alkenes and aromatics exhibited clear seasonal and diurnal patterns, driven by variations of hydroxyl (OH) radicals, which is the predominant oxidant of VOCs in the atmosphere. By examining tracer-tracer correlations for VOCs, variability-lifetime analysis and 36 h backward trajectories, strong emissions from vehicular exhaust, liquefied petroleum gas (LPG) and solvent usage were identified as key sources in Fuzhou and Xiamen, whereas at Mt. Wuyi the main emission sources were local emissions (e.g. biomass burning) in summer and long-range transport in winter. The results indicate that natural sites could be impacted strongly by surrounding urbanization. Isoprene and propylene in summer and propylene in winter contributed the most to ozone formation at the three sites. The data in this study provides a useful benchmark for future research on air quality monitoring and emission sources in the region.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA