Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38612749

RESUMO

A large amount of primary energy is lost due to friction, and the study of new additive materials to improve friction performance is in line with the concept of low carbon. Carbon nanotubes (CNTs) have advantages in drag reduction and wear resistance with their hollow structure and self-lubricating properties. This review investigated the mechanism of improving friction properties of blocky composites (including polymer, metal, and ceramic-based composites) with CNTs' incorporation. The characteristic tubular structure and the carbon film make low wear rate and friction coefficient on the surface. In addition, the effect of CNTs' aggregation and interfacial bond strength on the wear resistance was analyzed. Within an appropriate concentration range of CNTs, the blocky composites exhibit better wear resistance properties. Based on the differences in drag reduction and wear resistance in different materials and preparation methods, further research directions of CNTs have been suggested.


Assuntos
Nanotubos de Carbono , Cerâmica , Fricção , Polímeros , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA