Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(35): e2401713, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38693076

RESUMO

Aqueous zinc-based energy storage devices possess superior safety, cost-effectiveness, and high energy density; however, dendritic growth and side reactions on the zinc electrode curtail their widespread applications. In this study, these issues are mitigated by introducing a polyimide (PI) nanofabric interfacial layer onto the zinc substrate. Simulations reveal that the PI nanofabric promotes a pre-desolvation process, effectively desolvating hydrated zinc ions from Zn(H2O)6 2+ to Zn(H2O)4 2+ before approaching the zinc surface. The exposed zinc ion in Zn(H2O)4 2+ provides an accelerated charge transfer process and reduces the activation energy for zinc deposition from 40 to 21 kJ mol-1. The PI nanofabric also acts as a protective barrier, reducing side reactions at the electrode. As a result, the PI-Zn symmetric cell exhibits remarkable cycling stability over 1200 h, maintaining a dendrite-free morphology and minimal byproduct formation. Moreover, the cell exhibits high stability and low voltage hysteresis even under high current densities (20 mA cm-2, 10 mAh cm-2) thanks to the 3D porous structure of PI nanofabric. When integrated into full cells, the PI-Zn||AC hybrid zinc-ion capacitor and PI-Zn||MnVOH@SWCNT zinc-ion battery achieve impressive lifespans of 15000 and 600 cycles with outstanding capacitance retention. This approach paves a novel avenue for high-performance zinc metal electrodes.

2.
Langmuir ; 35(44): 14203-14212, 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31596591

RESUMO

A facile aerosol-based synthetic approach is demonstrated for the fabrication of silver-manganese oxide (Ag-MnOx) and cetyltrimethylammonium bromide (CTAB)-templated silver-manganese oxide (c-Ag-MnOx) hybrid nanostructures as the positive electrode materials of supercapacitors. Through gas-phase evaporation-induced self-assembly, silver nanoparticles are homogeneously decorated in the hybrid nanostructure to create a conductive path at the interface of the cluster of MnOx crystallites. The utilization of the capacitance of MnOx increases by the addition of Ag nanoparticles (>2 times for Ag-MnOx and ∼1.7 times for c-Ag-MnOx). An optimal specific capacitance is achieved when the concentration of the silver precursor (CAg) is 0.5 wt %, 118 F g-1 for Ag-MnOx, and 154 F g-1 for c-Ag-MnOx at a specific current of 1 A g-1. The enhanced supercapacitive performance by the addition of CTAB at low CAg is attributed to the increased surface area (>19.4%) for electrochemical reactions. The prototype method with mechanistic understanding demonstrated in this study shows promise for the fabrication of a variety of MnOx-based hybrid nanostructures for supercapacitor applications.

3.
Phys Chem Chem Phys ; 19(33): 22596, 2017 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-28796268

RESUMO

Correction for 'Zeolitic imidazolate framework (ZIF-8) derived nanoporous carbon: the effect of carbonization temperature on the supercapacitor performance in an aqueous electrolyte' by Christine Young et al., Phys. Chem. Chem. Phys., 2016, 18, 29308-29315.

4.
Nano Lett ; 16(9): 5719-27, 2016 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-27548051

RESUMO

Integrating various devices to achieve high-performance energy storage systems to satisfy various demands in modern societies become more and more important. Electrical double-layer capacitors (EDLCs), one kind of the electrochemical capacitors, generally provide the merits of high charge-discharge rates, extremely long cycle life, and high efficiency in electricity capture/storage, leading to a desirable device of electricity management from portable electronics to hybrid vehicles or even smart grid application. However, the low cell voltage (2.5-2.7 V in organic liquid electrolytes) of EDLCs lacks the direct combination of Li-ion batteries (LIBs) and EDLCs for creating new functions in future applications without considering the issue of a relatively low energy density. Here we propose a guideline, "choosing a matching pair of electrode materials and electrolytes", to effectively extend the cell voltage of EDLCs according to three general strategies. Based on the new strategy proposed in this work, materials with an inert surface enable to tolerate a wider potential window in commercially available organic electrolytes in comparison with activated carbons (ACs). The binder-free, vertically grown graphene nanowalls (GNW) and nitrogen-doped GNW (NGNW) electrodes respectively provide good examples for extending the upper potential limit of a positive electrode of EDLCs from 0.1 to 1.5 V (vs Ag/AgNO3) as well as the lower potential limit of a negative electrode of EDLCs from -2.0 V to ca. -2.5 V in 1 M TEABF4/PC (propylene carbonate) compared to ACs. This newly designed asymmetric EDLC exhibits a cell voltage of 4 V, specific energy of 52 Wh kg(-1) (ca. a device energy density of 13 Wh kg(-1)), and specific power of 8 kW kg(-1) and ca. 100% retention after 10,000 cycles charge-discharge, reducing the series number of EDLCs to enlarge the module voltage and opening the possibility for directly combining EDLCs and LIBs in advanced applications.

5.
Phys Chem Chem Phys ; 18(42): 29308-29315, 2016 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-27731874

RESUMO

Nanoporous carbon materials are a versatile source of carbons that would be useful in applications ranging from electronics to electrochemical energy storage. Here, we focus on nanoporous carbon materials prepared by direct carbonization of zeolitic imidazolate frameworks (ZIF-8) towards supercapacitor applications. Several types of nanoporous carbons have been prepared by varying the applied carbonization temperature. The symmetric devices assembled using nanoporous carbon electrodes were tested for their optimal performance in the electrolyte of sulfuric acid solution. We demonstrate the effects of various factors (e.g., surface area, nitrogen content, degree of graphitization, and relative percentage of micropores) on the performance.

6.
Nanotechnology ; 26(27): 274004, 2015 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-26086922

RESUMO

Anodic composite deposition is demonstrated to be a unique method for fabricating a ternary ruthenium dioxide/reduced graphene oxide/carbon nanotube (RuO2 xH2O/rGO/CNT, denoted as RGC) nanocomposite onto Ti as an advanced electrode material for supercapacitors. The rGO/CNT composite in RGCs acts as a conductive backbone to facilitate the electron transport between current collector and RuO2 xH2O nanoparticles (NPs), revealed by the high total specific capacitance (C(S,T) = 808 F g(-1)) of RGC without annealing. The contact resistance among RuO2 xH2O NPs is improved by low-temperature annealing at 150 °C (RGC-150), which renders slight sintering and enhances the specific capacitance of RuO2 xH2O to achieve 1200 F g(-1). The desirable nanocomposite microstructure of RGC-150 builds up the smooth pathways of both protons and electrons to access the active oxy-ruthenium species. This nanocomposite exhibits an extremely high C(S,T) of 973 F g(-1) at 25 mV s(-1) (much higher than 435 F g(-1) of an annealed RuO2 xH2O deposit) and good capacitance retention (60.5% with scan rate varying from 5 to 500 mV s(-1)), revealing an advanced electrode material for high-performance supercapacitors.

7.
Chemistry ; 20(43): 13838-52, 2014 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-25251360

RESUMO

Tremendous development in the field of portable electronics and hybrid electric vehicles has led to urgent and increasing demand in the field of high-energy storage devices. In recent years, many research efforts have been made for the development of more efficient energy-storage devices such as supercapacitors, batteries, and fuel cells. In particular, supercapacitors have great potential to meet the demands of both high energy density and power density in many advanced technologies. For the last half decade, graphene has attracted intense research interest for electrical double-layer capacitor (EDLC) applications. The unique electronic, thermal, mechanical, and chemical characteristics of graphene, along with the intrinsic benefits of a carbon material, make it a promising candidate for supercapacitor applications. This Review focuses on recent research developments in graphene-based supercapacitors, including doped graphene, activated graphene, graphene/metal oxide composites, graphene/polymer composites, and graphene-based asymmetric supercapacitors. The challenges and prospects of graphene-based supercapacitors are also discussed.

8.
Chemistry ; 20(26): 7895-900, 2014 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-24788922

RESUMO

Nanoporous carbons (NPCs) have large specific surface areas, good electrical and thermal conductivity, and both chemical and mechanical stability, which facilitate their use in energy storage device applications. In the present study, highly graphitized NPCs are synthesized by one-step direct carbonization of cobalt-containing zeolitic imidazolate framework-67 (ZIF-67). After chemical etching, the deposited Co content can be completely removed to prepare pure NPCs with high specific surface area, large pore volume, and intrinsic electrical conductivity (high content of sp(2) -bonded carbons). A detailed electrochemical study is performed using cyclic voltammetry and galvanostatic charge-discharge measurements. Our NPC is very promising for efficient electrodes for high-performance supercapacitor applications. A maximum specific capacitance of 238 F g(-1) is observed at a scan rate of 20 mV s(-1) . This value is very high compared to previous works on carbon-based electric double layer capacitors.

9.
Chemistry ; 20(11): 3084-8, 2014 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-24522895

RESUMO

The present work reports synthesis of cobalt hydroxide (Co(OH)2) rods on nickel foam and its supercapacitor application. Hierarchical Co(OH)2 rods with length of approximately 3.5 µm and diameter of approximately 400 nm were prepared by one-step, simple, and inexpensive chemical-bath-deposition method. The direct growth of Co(OH)2 rods on the Ni foam gave three dimensional (3D) structure for easy access of electrolyte throughout material surface. Also, well-adhered interface between Co(OH)2 rods and Ni-foam surface gave better conduction channels. Detailed electrochemical study was performed by using cyclic voltammetry and galvanostatic charge/discharge measurements. The results demonstrate that Co(OH)2 rods on Ni foam are efficient electrodes for supercapacitor application.

10.
Chemosphere ; 355: 141835, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38552799

RESUMO

This study provides insights regarding the selective metal leaching of brass in various tap water conditions, which benefits water utilities to predict the potential of metal released from brass water meters. The long-term time-dependent selective metal dissolution of brass with various ß phase fractions have not previously been investigated. In this study, a 201-d immersion experiment was carried out in low and high conductivity tap water (LCTW and HCTW, respectively). Three commercialized brass samples in different ß phase fractions (ß = 51%, ß = 43%, ß = 39%), named brass 51, brass 43, and brass 39, respectively, were used. The results showed that brass 51 had the most negative corrosion potential (-0.17 V) and the lowest polarization resistance (8.5 kΩ) compared to brass 43 and brass 39 (-0.04 V and 10.1-14.7 kΩ, respectively) in LCTW. This trend was verified by the 201-d immersion experiment in which brass 51 exhibited the highest zinc leaching rate (21-30 µg L-1 cm-2 d-1), followed by brass 43 and brass 39 (16-23 µg L-1 cm-2 d-1) in both waters. The leaching amounts of lead and copper were extremely low compared to zinc. In LCTW, the uniform corrosion (UC) mechanism dominated from day 1 to day 120. Afterwards, UC was replaced by the galvanic corrosion (GC) mechanism, with the selective leaching coefficient of Zn over Cu (SZn/Cu) increasing from 10 to 25 to 40-80. In HCTW, however, the SZn/Cu reached 300-1000, and the transition of UC to GC occurred earlier on day 30 due to the rapid formation of the ZnO layer on the brass surface that hindered the ion attack.


Assuntos
Cobre , Água , Chumbo , Zinco
11.
Mater Horiz ; 11(16): 3792-3804, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-38946305

RESUMO

Electrochemical deionization (ECDI) has emerged as a promising technology for water treatment, with faradaic ECDI systems garnering significant attention due to their enhanced performance potential. This study focuses on the development of a highly stable and efficient, full-polymer (polypyrrole, PPy) ECDI system based on two key strategies. Firstly, dopant engineering, involving the design of dopants with a high charge/molecular weight (MW) ratio and structural complexity, facilitating their effective integration into the polymer backbone. This ensures sustained contribution of strong negative charges, enhancing system performance, while the bulky dopant structure promotes stability during extended operation cycles. Secondly, operating the system with well-balanced charges between deionization and concentration processes significantly reduces irreversible reactions on the polymer, thereby mitigating dopant leakage. Implementing these strategies, the PPy(PSS)//PPy(ClO4) (PSS: polystyrene sulfonate) system achieves a high salt removal capacity (SRC) of 48 mg g-1, an ultra-low energy consumption (EC) of 0.167 kW h kgNaCl-1, and remarkable stability, with 96% SRC retention after 104 cycles of operation. Additionally, this study provides a detailed degradation mechanism based on pre- and post-cycling analyses, offering valuable insights for the construction of highly stable ECDI systems with superior performance in water treatment applications.

12.
ChemSusChem ; 16(12): e202300259, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-36869690

RESUMO

Zinc-ion batteries, in which zinc ions and protons do intercalation and de-intercalation during battery cycling with various proposed mechanisms under debate, have been studied. Recently, electrolytic zinc-manganese batteries, exhibiting the pure dissolution-deposition behavior with a large charge capacity, have been accomplished through using electrolytes with Lewis acid. However, the complicated chemical environment and mixed products hinder the investigation though it is crucial to understand the detailed mechanism. Here, cyclic voltammetry coupled electrochemical quartz crystal microbalance (EQCM) and ultraviolet-visible spectrophotometry (UV-Vis) are respectively, for the very first time, used to study the transition from zinc-ion batteries to zinc electrolytic batteries by the continuous addition of acetate ions. These complementary techniques operando trace the mass and the composition evolution. The observed formation and dissolution of zinc hydroxide sulfate (ZHS) and manganese oxides evince the effect of acetate ions on zinc-manganese batteries from an alternative perspective. Both the amount of acetate and the pH value have large impacts on the capacity and Coulombic efficiency of the MnO2 electrode, and thus they should be optimized when constructing a full zinc-manganese battery with high rate capability and reversibility.


Assuntos
Manganês , Zinco , Compostos de Manganês , Técnicas de Microbalança de Cristal de Quartzo , Óxidos , Espectrofotometria Ultravioleta , Acetatos
13.
ACS Appl Mater Interfaces ; 15(40): 46812-46828, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37773582

RESUMO

Manganese oxide is an effective active material in several electrochemical systems, including batteries, supercapacitors, and electrochemical deionization (ECDI). This work conducts a comprehensive study on the ion-selective behavior of MnOx to fulfill the emptiness in the energy and environmental science field. Furthermore, it broadens the promising application of MnOx in the ion-selective ECDI system. We propose a time-dependent multimechanism ion-selective behavior with the following guidelines by utilizing a microfluidic cell and the electrochemical quartz crystal microbalance (EQCM) analysis. (1) Hydrated radius is the most critical factor for ions with the same valence, and MnOx tends to capture cations with a small hydrated radius. (2) The importance of charge density rises when comparing cations with different valences, and MnOx prefers to capture divalent cations with a strong electrostatic attraction at prolonged times. Under this circumstance, ion swapping may occur where divalent cations replace monovalent cations. (3) NH4+ triggers MnOx dissolution, leading to performance and stability decay. The EQCM evidence has directly verified the proposed mechanisms, and these data provide a novel but simple method to judge ion selectivity preference. The overall ion selectivity sequence is Ca2+ > Mg2+ > K+ > NH4+> Na+ > Li+ with the highest selectivity values of ßCa//Li and ßCa//Na around 3 at the deionization time = 10 min.

14.
J Phys Chem C Nanomater Interfaces ; 126(29): 12074-12081, 2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35928240

RESUMO

Shell-isolated nanoparticles (SHINs) with a 37 nm gold core and an 11 nm tin dioxide (SnO2) coating exhibited long-life Raman enhancement for 3 months and a wide pH stability of pH 2-13 in comparison with conventional SiO2-coated SHINs. Herein, Au-SnO2 is demonstrated as a more durable SHIN for use in the technique Shell-Isolated Nanoparticles for Enhanced Raman Spectroscopy (SHINERS).

15.
ACS Appl Mater Interfaces ; 14(46): 52035-52045, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36346965

RESUMO

Ni-containing heteropolyvanadate, Na6[NiV14O40], was synthesized for the first time to be applied in high-energy lithium storage applications as a negative electrode material. Na6[NiV14O40] can be prepared via a facile solution process that is suitable for low-cost mass production. The as-prepared electrode provided a high capacity of approximately 700 mAh g-1 without degradation for 400 cycles, indicating excellent cycling stability. The mechanism of charge storage was investigated using operando X-ray absorption spectroscopy (XAS), X-ray diffraction (XRD), transition X-ray microscopy (TXM), and density functional theory (DFT) calculations. The results showed that V5+ was reduced to V2+ during lithiation, indicating that Na6[NiV14O40] is an insertion-type material. In addition, Na6[NiV14O40] maintained its amorphous structure with negligible volume expansion/contraction during cycling. Employed as the negative electrode in a lithium-ion battery (LIB), the Na6[NiV14O40]//LiFePO4 full cell had a high energy density of 300 W h kg-1. When applied in a lithium-ion capacitor, the Na6[NiV14O40]//expanded mesocarbon microbead full cell displayed energy densities of 218.5 and 47.9 W h kg-1 at power densities of 175.7 and 7774.2 W kg-1, respectively. These findings reveal that the negative electrode material Na6[NiV14O40] is a promising candidate for Li-ion storage applications.

16.
Nat Commun ; 13(1): 5460, 2022 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-36115857

RESUMO

Photocatalytic water splitting is attracting considerable interest because it enables the conversion of solar energy into hydrogen for use as a zero-emission fuel or chemical feedstock. Herein, we present a universal approach for inserting hydrophilic non-conjugated segments into the main-chain of conjugated polymers to produce a series of discontinuously conjugated polymer photocatalysts. Water can effectively be brought into the interior through these hydrophilic non-conjugated segments, resulting in effective water/polymer interfaces inside the bulk discontinuously conjugated polymers in both thin-film and solution. Discontinuously conjugated polymer with 10 mol% hexaethylene glycol-based hydrophilic segments achieves an apparent quantum yield of 17.82% under 460 nm monochromatic light irradiation in solution and a hydrogen evolution rate of 16.8 mmol m-2 h-1 in thin-film. Molecular dynamics simulations show a trend similar to that in experiments, corroborating that main-chain engineering increases the possibility of a water/polymer interaction. By introducing non-conjugated hydrophilic segments, the effective conjugation length is not altered, allowing discontinuously conjugated polymers to remain efficient photocatalysis.

17.
Chem Sci ; 12(25): 8909-8919, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34257892

RESUMO

Electrochemical investigations of the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) have been conducted in a Ca2+-containing dimethyl sulfoxide electrolyte. While the ORR appears irreversible, the introduction of a tetrabutylammonium perchlorate (TBAClO4) co-salt in excess concentrations results in the gradual appearance of a quasi-reversible OER process. Combining the results of systematic cyclic voltammetry investigations, the degree of reversibility depends on the ion pair competition between Ca2+ and TBA+ cations to interact with generated superoxide (O2 -). When TBA+ is in larger concentrations, and large reductive overpotentials are applied, a quasi-reversible OER peak emerges with repeated cycling (characteristic of formulations without Ca2+ cations). In situ Raman microscopy and rotating ring-disc electrode (RRDE) experiments revealed more about the nature of species formed at the electrode surface and indicated the progressive evolution of a charge storage mechanism based upon trapped interfacial redox. The first electrochemical step involves generation of O2 -, followed primarily by partial passivation of the surface by Ca x O y product formation (the dominant initial reaction). Once this product matrix develops, the subsequent formation of TBA+--O2 - is contained within the Ca x O y product interlayer at the electrode surface and, consequently, undergoes a facile oxidation reaction to regenerate O2.

18.
ACS Omega ; 6(14): 9692-9699, 2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33869949

RESUMO

In this study, electronic structure calculations and Bader charge analysis have been completed on the inverse, intermediate, and normal spinel structures of NiCo2O4 in both primitive and conventional cells, using density functional theory with Hubbard U correction. Three spinel structures have been computed in the primitive cell, where the fully inverse spinel, 50% intermediate spinel, and normal spinel can be acquired by swapping Ni and Co atoms on tetrahedral and octahedral sites. Furthermore, NiCo2O4 with different degrees of inversion in the conventional cells was also investigated, along with their doping energies. Confirmed by the assigned formal charges, magnetic moments, and decomposed density of state, our results suggest that the electronic properties of Ni and Co on the tetrahedral site can be altered by swapping Ni and Co atoms, whereas both Ni and Co on the octahedral site are uninfluenced. A simple and widely used model, crystal field theory, is also compared with our calculations and shows a consistent prediction about the cation distribution in NiCo2O4. This study analyzes the correlation between cation arrangements and formal charges, which could potentially be used to predict the desired electronic properties of NiCo2O4 for various applications.

19.
Sci Data ; 7(1): 395, 2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-33188206

RESUMO

Electrically rechargeable zinc oxygen batteries are promising energy storage devices. They appeal due to the abundance of zinc metal and their high energy density. Research on zinc oxygen batteries is currently focusing on the development of electrode materials. Since the progress is rapid and no state-of-the-art is agreed upon yet, it is difficult to benchmark their performance. This circumstance also complicates the use of the generated electrochemical data for model-based research - simulating the processes in the battery requires reliable performance data and material properties from experimental investigations. Herein we describe reproducible data on the cycling performance and durability of zinc oxygen batteries. We utilize anodes and gas diffusion electrodes (with the bifunctional catalysts Sr2CoO3Cl, Ru-Sn oxide, and Fe0.1Ni0.9Co2O4 with activated carbon) with low degradation during cycling, and present voltage data of current-dependent discharge and charge. All in all, we stimulate to reuse the data for parameter fitting in model-based work, and also to evaluate novel battery materials by preventing or minimizing side reactions with the testing protocol and setup utilized.

20.
Sci Total Environ ; 659: 221-229, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30599341

RESUMO

A dual-anode consists of stainless steel and TiO2/Ti electrodes is used to study the kinetics of the degradation of hazardous chemicals exemplified by azo dye orange G (OG) using a coupling photoelectrochemical catalytic and photoelectro-Fenton (PEC/PEF) system. Concurrent generation of hydroxyl radicals on the TiO2/Ti photocatalyst and in-situ generation of Fenton reagents on the stainless steel electrode greatly enhances the performance of the PEC/PEF electrodes over that of the PEC and the PEF alone process. The efficiency of the PEC/PEF process is a function of Fe2+ and H2O2 concentration OH⋅ in the solution bulk, which promotes the oxidative degradation of OG and its byproducts. The mean carbon oxidation state (COS) is estimated to reflect the degree of mineralization. Based on the pseudo first-order kinetics with respect to OH, OG, Fe2+, the corresponding reaction rates is established. UV-Vis spectrometry reveals the presence of four major intermediates, which helps establish the OG degradation pathways.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA