Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Infect Dis ; 228(Suppl 7): S701-S711, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37474248

RESUMO

Marburg virus (MARV) causes a hemorrhagic fever disease in human and nonhuman primates with high levels of morbidity and mortality. Concerns about weaponization of aerosolized MARV have spurred the development of nonhuman primate (NHP) models of aerosol exposure. To address the potential threat of aerosol exposure, a monoclonal antibody that binds MARV glycoprotein was tested, MR186YTE, for its efficacy as a prophylactic. MR186YTE was administered intramuscularly to NHPs at 15 or 5 mg/kg 1 month prior to MARV aerosol challenge. Seventy-five percent (3/4) of the 15 mg/kg dose group and 50% (2/4) of the 5 mg/kg dose group survived. Serum analyses showed that the NHP dosed with 15 mg/kg that succumbed to infection developed an antidrug antibody response and therefore had no detectable MR186YTE at the time of challenge. These results suggest that intramuscular dosing of mAbs may be a clinically useful prophylaxis for MARV aerosol exposure.


Assuntos
Doença do Vírus de Marburg , Marburgvirus , Animais , Humanos , Anticorpos Monoclonais , Primatas , Aerossóis
2.
Environ Monit Assess ; 193(1): 7, 2020 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-33313969

RESUMO

The Michigan Pollution Assessment Laboratory (MPAL) is a mobile air quality monitoring platform designed to measure conventional, toxic, and greenhouse gas (GHG) air pollutants. The spatially and temporally resolved data collected can be used for multiple purposes, such as mapping spatial patterns and identifying peaks. The truck-based platform includes instrumentation for 11 gaseous pollutants and for particulate matter (PM), size distribution (7 nm to 20 µm), PM10, black and brown carbon, and trace metals. MPAL is equipped with meteorological instruments, a high-accuracy GPS, forward and reverse cameras, and a data logging and display system. We selected commercially available instrumentation based on sensitivity, response time, and robustness. The vehicle's power system allows ~ 6.5 h of continuous operation with all instruments operating. This article details the design, construction, and evaluation of MPAL and summarizes data collected in its first year (March 2019 to March 2020) of operation. We completed a series of runs on 84 days in Detroit, Michigan, an area with a diverse set of traffic, industrial, and commercial emission sources, and collected 265,816 1-s observations (excluding collocations, zero checks, and other quality assurance measurements). Using data from these runs as well as special tests, we present results of performance evaluations that examined the response time, PM losses, and wind measurements and compare results to stationary regulatory monitoring data. We highlight key issues and provide practical solutions to help evaluate and resolve these issues and share many lessons learned in developing and using a mobile platform.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Ambientais , Gases de Efeito Estufa , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Monitoramento Ambiental , Gases , Michigan , Material Particulado/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA