RESUMO
BACKGROUND: AP2/ERF is a large family of plant transcription factor proteins that play essential roles in signal transduction, plant growth and development, and responses to various stresses. The AP2/ERF family has been identified and verified by functional analysis in various plants, but so far there has been no comprehensive study of these factors in Chinese prickly ash. Phylogenetic, motif, and functional analyses combined with transcriptome analysis of Chinese prickly ash fruits at different developmental stages (30, 60, and 90 days after anthesis) were conducted in this study. RESULTS: The analysis identified 146 ZbAP2/ERF genes that could be classified into 15 subgroups. The motif analysis revealed the presence of different motifs or elements in each group that may explain the functional differences between the groups. ZbERF13.2, ZbRAP2-12, and ZbERF2.1 showed high levels of expression in the early stages of fruit development. ZbRAP2-4, and ZbERF3.1 were significantly expressed at the fruit coloring stage (R2 and G2). ZbERF16 were significantly expressed at fruit ripening and expression level increased as the fruit continued to develop. Relative gene expression levels of 6 representative ZbAP2/ERFs assessed by RT-qPCR agreed with transcriptome analysis results. CONCLUSIONS: These genes identified by screening can be used as candidate genes that affect fruit development. The results of the analysis can help guide future genetic improvement of Chinese prickly ash and enrich our understanding of AP2/ERF transcription factors and their regulatory functions in plants.
Assuntos
Frutas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Fatores de Transcrição , Zanthoxylum , Frutas/genética , Frutas/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Genes de Plantas , Genoma de Planta , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Zanthoxylum/genética , Zanthoxylum/crescimento & desenvolvimentoRESUMO
The construction of an all-in-one catalyst, in which the photosensitizer and the transition metal site are close to each other, is important for improving the efficiency of metallaphotoredox catalysis. However, the development of convenient synthetic strategies for the precise construction of an all-in-one catalyst remains a challenging task due to the requirement of precise installation of the catalytic sites. Herein, we have successfully established a facile bottom-up strategy for the direct synthesis of Ni(II)-incorporated covalent organic framework (COF), named LZU-713@Ni, as a versatile all-in-one metallaphotoredox catalyst. LZU-713@Ni showed excellent activity and recyclability in the photoredox/nickel-catalyzed C-O, C-S, and C-P cross-coupling reactions. Notably, this catalyst displayed a better catalytic activity than its homogeneous analogues, physically mixed dual catalyst system, and, especially, LZU-713/Ni which was prepared through post-synthetic modification. The improved catalytic efficiency of LZU-713@Ni should be attributed to the implementation of bottom-up strategy, which incorporated the fixed, ordered, and abundant catalytic sites into its framework. This work sheds new light on the exploration of concise and effective strategies for the construction of multifunctional COF-based photocatalysts.
RESUMO
In this study, we identified a novel mycovirus, Fusarium graminearum ormycovirus 1 (FgOV1), from the pathogenic fungus Fusarium graminearum. The virus has two RNA segments, RNA1 and RNA2, with lengths of 2,591 and 1,801 nucleotides, respectively, excluding the polyA tail. Each segment contains a single open reading frame (ORF). The ORF in RNA1 encodes an RNA-dependent RNA polymerase, while the ORF in RNA2 encodes a hypothetical protein. Phylogenetic analysis showed that FgOV1 belongs to the gammaormycovirus clade, whose members are related to betaormycoviruses. To our knowledge, this is the first report of an ormycovirus in Fusarium graminearum.
Assuntos
Micovírus , Fusarium , Genoma Viral , Fases de Leitura Aberta , Filogenia , Doenças das Plantas , Vírus de RNA , RNA Viral , Fusarium/virologia , Fusarium/genética , Fusarium/isolamento & purificação , Micovírus/genética , Micovírus/classificação , Micovírus/isolamento & purificação , Doenças das Plantas/microbiologia , Doenças das Plantas/virologia , Genoma Viral/genética , Vírus de RNA/genética , Vírus de RNA/isolamento & purificação , Vírus de RNA/classificação , RNA Viral/genética , Proteínas Virais/genética , RNA Polimerase Dependente de RNA/genéticaRESUMO
BACKGROUND: Chinese wheat mosaic virus (CWMV) often causes severe damage to wheat (Triticum aestivum L.) growth and yield. It is well known that a successful infection in plants depends on a complex interaction between the host plant and the pathogen. Post-translational modification (PTM) of proteins is considered to be one of the main processes that decides the outcome of the plant-pathogen arms race during this interaction. Although numerous studies have investigated PTM in various organisms, there has been no large-scale phosphoproteomic analysis of virus-infected wheat plants. We therefore aimed to investigate the CWMV infection-induced phosphoproteomics changes in wheat by high-resolution liquid chromatography-tandem mass spectroscopy (LC-MS/MS) using affinity-enriched peptides followed by comprehensive bioinformatics analysis. RESULTS: Through this study, a total of 4095 phosphorylation sites have been identified in 1968 proteins, and 11.6% of the phosphorylated proteins exhibited significant changes (PSPCs) in their phosphorylation levels upon CWMV infection. The result of Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that most of the PSPCs were associated with photosynthesis, plant-pathogen interactions, and MAPK signaling pathways. The protein-protein interaction (PPI) network analysis result showed that these PSPCs were mainly participated in the regulation of biosynthesis and metabolism, protein kinase activities, and transcription factors. Furthermore, the phosphorylation levels of TaChi1 and TaP5CS, two plant immunity-related enzymes, were significantly changed upon CWMV infection, resulting in a significant decrease in CWMV accumulation in the infected plants. CONCLUSIONS: Our results indicate that phosphorylation modification of protein plays a critical role in wheat resistance to CWMV infection. Upon CWMV infection, wheat plants will regulate the levels of extra- and intra-cellular signals and modifications of enzyme activities via protein phosphorylation. This novel information about the strategies used by wheat to resist CWMV infection will help researchers to breed new CWMV-resistant cultivars and to better understand the arms race between wheat and CWMV.
Assuntos
Plântula , Triticum , Fosforilação , Triticum/metabolismo , Plântula/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Melhoramento Vegetal , Proteoma/metabolismo , Fatores de Transcrição/metabolismo , Doenças das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMO
GDP-L-galactose phosphorylase (VTC2) catalyses the conversion of GDP-L-galactose to L-galactose-1-P, a vital step of ascorbic acid (AsA) biosynthesis in plants. AsA is well known for its function in the amelioration of oxidative stress caused by most pathogen infection, but its function against viral infection remains unclear. Here, we have identified a VTC2 gene in wheat named as TaVTC2 and investigated its function in association with the wheat yellow mosaic virus (WYMV) infection. Our results showed that overexpression of TaVTC2 significantly increased viral accumulation, whereas knocking down TaVTC2 inhibited the viral infection in wheat, suggesting a positive regulation on viral infection by TaVTC2. Moreover, less AsA was produced in TaVTC2 knocking down plants (TaVTC2-RNAi) which due to the reduction in TaVTC2 expression and subsequently in TaVTC2 activity, resulting in a reactive oxygen species (ROS) burst in leaves. Furthermore, the enhanced WYMV resistance in TaVTC2-RNAi plants was diminished by exogenously applied AsA. We further demonstrated that WYMV NIb directly bound to TaVTC2 and inhibited TaVTC2 enzymatic activity in vitro. The effect of TaVTC2 on ROS scavenge was suppressed by NIb in a dosage-dependent manner, indicating the ROS scavenging was highly regulated by the interaction of TaVTC2 with NIb. Furthermore, TaVTC2 RNAi plants conferred broad-spectrum disease resistance. Therefore, the data indicate that TaVTC2 recruits WYMV NIb to down-regulate its own enzymatic activity, reducing AsA accumulation to elicit a burst of ROS which confers the resistance to WYMV infection. Thus, a new mechanism of the formation of plant innate immunity was proposed.
Assuntos
Vírus do Mosaico , Triticum , Triticum/genética , Espécies Reativas de Oxigênio , Galactose , Estresse Oxidativo , Vírus do Mosaico/genética , Doenças das Plantas/genéticaRESUMO
In this study, a novel positive single-stranded RNA (+ ssRNA) virus named wheat yellow stripe associated virus (WYSAV) was identified in wheat plants in China. Molecular characterization revealed that the complete genome of WYSAV is divided into two segments, RNA1 and RNA2, which are 6,460 and 4,935 nucleotides (nt) in length, excluding their respective poly(A) tails. RNA1 contains one large opening reading frame (ORF), encoding a replication-associated protein. RNA2 contains six ORFs, encoding a coat protein (CP), a coat protein readthrough domain protein (CP-RTD), triple gene block protein 1 (TGB1), triple gene block protein 2 (TGB2), triple gene block protein 3 (TGB3), and a cysteine-rich protein (CRP). Phylogenetic analysis showed that WYSAV is related to members of the genus Benyvirus in the family Benyviridae. Thus, WYSAV is proposed to be a new member of the genus Benyvirus. Wheat (Triticum aestivum L.) is one of the most important food crops and ranked third in the world in terms of production, only behind rice and maize [1]. During its growth cycle, wheat faces several biotic and abiotic stresses. Wheat soil-borne virus disease is an important disease that is difficult to control and causes severe yield loss in China each year [2]. The main pathogens causing wheat soil-borne virus disease are Chinese wheat mosaic virus (CWMV) and wheat yellow mosaic virus (WYMV), and their transmission vector is Polymyxa graminis [3-5]. Members of the viral family Benyviridae usually have two to five genomic RNA segments and are transmitted by root-infecting vectors belonging to the family "Plasmodiophoridae". Although few members of the family Benyviridae, of which beet necrotic yellow vein virus is the type member, have been identified [6], several recently identified viruses have been found to be phylogenetically related to benyviruses but are not classified as members of the family Benyviridae. These "unclassified benyviruses" include red clover RNA virus 1, Arceuthobium sichuanense virus 3, Dactylorhiza hatagirea beny-like virus, goji berry chlorosis virus [7], Guiyang benyvirus 1, Guiyang benyvirus 2, Mangifera indica latent virus [8], Rhizoctonia solani beny-like virus 1 [9], Sanya benyvirus 1 [10], and Sclerotium rolfsii beny-like virus 1 [11].In this study, we identified a novel + ssRNA virus in symptomatic leaf samples collected from cultivated wheat in the city of Zhumadian, Henan Province, China. We propose to name this virus "wheat yellow stripe associated virus" (WYSAV), and we have deposited its full-length sequence in the GenBank database under the accession numbers OQ547804 (RNA1) and OQ547805 (RNA2).
Assuntos
Vírus de RNA , Viroses , Triticum , Filogenia , China , RNA , SoloRESUMO
NAC (NAM, ATAF1/2, and CUC2) transcription factors (TFs) are one of the largest plant-specific TF families and play a pivotal role in adaptation to abiotic stresses. The genome-wide analysis of NAC TFs is still absent in Zanthoxylum bungeanum. Here, 109 ZbNAC proteins were identified from the Z. bungeanum genome and were classified into four groups with Arabidopsis NAC proteins. The 109 ZbNAC genes were unevenly distributed on 46 chromosomes and included 4 tandem duplication events and 17 segmental duplication events. Synteny analysis of six species pairs revealed the closely phylogenetic relationship between Z. bungeanum and C. sinensis. Twenty-four types of cis-elements were identified in the ZbNAC promoters and were classified into three types: abiotic stress, plant growth and development, and response to phytohormones. Co-expression network analysis of the ZbNACs revealed 10 hub genes, and their expression levels were validated by real-time quantitative polymerase chain reaction (qRT-PCR). Finally, ZbNAC007, ZbNAC018, ZbNAC047, ZbNAC072, and ZbNAC079 were considered the pivotal NAC genes for drought tolerance in Z. bungeanum. This study represented the first genome-wide analysis of the NAC family in Z. bungeanum, improving our understanding of NAC proteins and providing useful information for molecular breeding of Z. bungeanum.
Assuntos
Secas , Zanthoxylum , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Zanthoxylum/genética , Zanthoxylum/metabolismoRESUMO
BACKGROUND: Apomixis is a form of asexual reproduction that produces offspring without the need for combining male and female gametes, and the offspring have the same genetic makeup as the mother. Therefore, apomixis technology has great application potential in plant breeding. To identify the apomixis types and critical period, embryonic development at different flower development stages of Zanthoxylum bungeanum was observed by cytology. RESULTS: The results show that the S3 stage is the critical period of apomixis, during which the nucellar cells develop into an adventitious primordial embryo. Cytological observations showed that the type of apomixis in Z. bungeanum is sporophytic apomixis. Furthermore, miRNA sequencing, miRNA-target gene interaction, dual luciferase reporter assay, and RT-qPCR verification were used to reveal the dynamic regulation of miRNA-target pairs in Z. bungeanum apomixis. The miRNA sequencing identified 96 mature miRNAs, of which 40 were known and 56 were novel. Additionally, 29 differentially expressed miRNAs were screened according to the miRNAs expression levels at the different developmental stages. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analyses showed that the target genes of the differentially expressed miRNAs were mainly enriched in plant hormone signal transduction, RNA biosynthetic process, and response to hormone pathways. CONCLUSIONS: During the critical period of apomictic embryonic development, miR172c significantly reduces the expression levels of TOE3 and APETALA 2 (AP2) genes, thereby upregulating the expression of the AGAMOUS gene. A molecular regulation model of miRNA-target pairs was constructed based on their interactions and expression patterns to further understand the role of miRNA-target pairs in apomixis. Our data suggest that miR172c may regulates AGAMOUS expression by inhibiting TOE3 in the critical period of apomixis.
Assuntos
Apomixia/genética , Flores/crescimento & desenvolvimento , MicroRNAs/genética , RNA de Plantas/genética , Sementes/embriologia , Zanthoxylum/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Melhoramento Vegetal , Análise de Sequência de RNA , Zanthoxylum/embriologia , Zanthoxylum/genéticaRESUMO
BACKGROUND: Dietary intervention is an important approach to improve intestinal function of weaned piglets. Phytogenic and herbal products have received increasing attention as in-feed antibiotic alternatives. This study investigated the chemical composition of guava leaf extract (GE) by ultrahigh-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Meanwhile, we investigated the effects of dietary supplementation with GE on diarrhea in relation to immune responses and intestinal health in weaned piglets challenged by enterotoxigenic Escherichia coli (ETEC). RESULTS: In total, 323 characterized compounds, which including 91 phenolic compounds and 232 other compounds were identified. Animal experiment results showed that the supplementation of 50-200 mg kg-1 of GE in the diet could reduce diarrhea incidence, increase activities of superoxide dismutase, glutathione peroxidase and total anti-oxidant capacity in the serum (P < 0.05), decrease the levels of interleukin 1ß, interleukin 6 and tumor necrosis factor α in the serum or jejunum mucosa (P < 0.05), and increase villus height and villus height to crypt depth ratio (P < 0.05) in the jejuna of piglets challenged by oral ETEC compared with negative control group (NC). Meanwhile, diet supplementation with 50-200 mg kg-1 GE reduced the levels of D-lactate, endothelin-1 and diamine oxidase in the serum, and increased the expression of zonula occludens-1, Claudin-1, Occludin and Na+ /H+ exchanger 3 (P < 0.05) in the jejuna mucosa of piglets challenged by ETEC compared with the NC. CONCLUSIONS: These results suggested that GE could attenuate diarrhea and improve intestinal barrier function of piglets challenged by ETEC. © 2020 Society of Chemical Industry.
Assuntos
Diarreia/veterinária , Mucosa Intestinal/metabolismo , Extratos Vegetais/metabolismo , Folhas de Planta/metabolismo , Psidium/química , Doenças dos Suínos/prevenção & controle , Ração Animal/análise , Animais , Cromatografia Líquida , Diarreia/metabolismo , Diarreia/microbiologia , Diarreia/prevenção & controle , Dieta/veterinária , Escherichia coli Enterotoxigênica/fisiologia , Mucosa Intestinal/crescimento & desenvolvimento , Mucosa Intestinal/microbiologia , Extratos Vegetais/química , Folhas de Planta/química , Psidium/genética , Psidium/metabolismo , Suínos/crescimento & desenvolvimento , Suínos/metabolismo , Doenças dos Suínos/metabolismo , Doenças dos Suínos/microbiologia , Espectrometria de Massas em Tandem , DesmameRESUMO
This study was carried out to investigate the effect of diet Piper sarmentosum extract (PSE) on the growth performance, antioxidant properties, rumen fermentation and microflora in goats. Forty Hainan black goats with similar body weight were divided into four groups with supplementation of PSE in the concentrate at 0, 300, 600 and 1,200 mg/kg, respectively, and fed for 56 days. Results showed that average daily gain (ADG) was higher and feed intake/body gain (F/G) was lower in goats fed with PSE at 300 mg/kg (p < .05). The activities of glutathione peroxidase (GSH-Px) and total antioxidant capacity (T-AOC) in the serum of goats differed among treatments and were greatest linearly when PSE was added at 1,200 mg/kg (p < .05). The level of malondialdehyde (MDA) in the serum of goats differed among treatments and was lowest linearly when PSE was added at 1,200 mg/kg (p < .05). The level of protozoal protein in the rumen of goats differed among treatments and was lowest linearly when PSE was added at 1,200 mg/kg (p < .05). The concentrations of ruminal acetic acid and valeric acid and the ratio of acetate to propionate were reduced with PSE supplementation (p < .05). Protozoa, fungi, Ruminococcus flavefaciens and Fibrobacter succinogenes contents differed among treatments and were lowest linearly when PSE was added at 1,200 mg/kg (p < .05). Thus, supplementation of PSE at 300-1,200 mg/kg to goat concentrate is recommended for improving antioxidative ability and rumen efficiency and reducing protozoal content of goat.
Assuntos
Microbioma Gastrointestinal/efeitos dos fármacos , Cabras/crescimento & desenvolvimento , Piper/química , Extratos Vegetais/farmacologia , Rúmen/efeitos dos fármacos , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Antioxidantes , Dieta/veterinária , Suplementos Nutricionais , Relação Dose-Resposta a Droga , Fermentação , Cabras/fisiologia , Extratos Vegetais/administração & dosagem , Extratos Vegetais/química , Rúmen/microbiologiaRESUMO
Alternative splicing plays important roles in diverse aspects of plant development, metabolism, and stress responses. However, the regulatory mechanisms of alternative splicing of genes still remain incompletely elucidated, especially in plants. In this study, the synonymous codon usage pattern of alternatively spliced (AS) genes in rice was firstly explored using the combination of correspondence analysis (CA), internal CA, correlation and ANOVA analyses. The results show that alternatively and non-alternatively spliced (non-AS) genes have similar tendency for overall codon usage, but exhibit significant difference in 58 out of 64 codons. AS and non-AS genes are both under strong purifying selection, but the former ones have significant lower mutation rate and are prone to be enriched towards the chromosomal ends. In the group of AS genes, the variability in synonymous codon usage between genes is mainly due to the variations in GC content, CDS length, as well as gene functions. Mutational bias that accounts for 25.85 % of the total codon usage variability plays a major role in shaping the codon usage pattern of AS genes. In contrast, no obvious evidence is found for the contributions of translational selection, AS types, the conservation of AS events, and numbers of AS variants to the codon usage divergence between AS genes. These findings may be useful for further understanding the mechanisms of origination, differentiation and regulation of alternatively spliced genes in plants.
Assuntos
Genes de Plantas , Oryza/genética , Processamento Alternativo , Cromossomos de Plantas/genética , Códon , Evolução Molecular , Expressão Gênica , Taxa de Mutação , Isoformas de Proteínas/genética , Sítios de Splice de RNARESUMO
The next-generation sequencing of tens to hundreds of plant genotypes made the uncovering of miRNA genes evolution available at the genome-wide level. Using the combinations of population genetics and evolutionary biology approaches, we have identified 21 miRNA loci having significant negative Tajima's D and Fu and Li's D* and F* values, of which 14 miRNAs (ps-miRNAs) showing clear signatures of positive selection in domesticated rice. The average sequence diversity (π) of the 21 miRNAs in cultivated rice is only 13.8 % of that in their wild progenitors. Interestingly, protein-coding genes immediately flanking these ps-miRNAs are apparently under weaker selective constraints. Totally, the 21 miRNAs are predicted to target 68 mRNA genes, of which 12 targets are estimated to have endured positive selection during rice evolution. In addition, the expression pattern and potential biological functions of ps-miRNAs targets are further investigated by searching published micro-array data and different mutant databases, respectively. We conclude that miRNAs, like protein-coding genes, should be crucial for driving rice evolution. These analyses may deepen our understanding on the miRNA genes evolution and functions during rice domestication.
Assuntos
MicroRNAs/genética , Oryza/genética , RNA de Plantas/genética , Sequência de Bases , Sequência Conservada , Evolução Molecular , Genoma de Planta , MicroRNAs/metabolismo , Anotação de Sequência Molecular , Oryza/metabolismo , RNA de Plantas/metabolismo , Seleção Genética , TranscriptomaRESUMO
E3 ubiquitin ligases play a pivotal role in ubiquitination, a crucial post-translational modification process. Anaphase-promoting complex (APC), a large cullin-RING E3 ubiquitin ligase, regulates the unidirectional progression of the cell cycle by ubiquitinating specific target proteins and triggering plant immune responses. Several E3 ubiquitin ligases have been identified owing to advancements in sequencing and annotation of the wheat genome. However, the types and functions of APC E3 ubiquitin ligases in wheat have not been reported. This study identified 14 members of the APC gene family in the wheat genome and divided them into three subgroups (CCS52B, CCS52A, and CDC20) to better understand their functions. Promoter sequence analysis revealed the presence of several cis-acting elements related to hormone and stress responses in the APC E3 ubiquitin ligases in wheat. All identified APC E3 ubiquitin ligase family members were highly expressed in the leaves, and the expression of most genes was induced by the application of methyl jasmonate (MeJA). In addition, the APC gene family in wheat may play a role in plant defense mechanisms. This study comprehensively analyzes APC genes in wheat, laying the groundwork for future research on the function of APC genes in response to viral infections and expanding our understanding of wheat immunity mechanisms.
Assuntos
Triticum , Ubiquitina-Proteína Ligases , Ciclossomo-Complexo Promotor de Anáfase/genética , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Triticum/genética , Triticum/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/genética , Ubiquitina/genéticaRESUMO
Glycosylation, a dynamic modification prevalent in viruses and higher eukaryotes, is principally regulated by uridine diphosphate (UDP)-glycosyltransferases (UGTs) in plants. Although UGTs are involved in plant defense responses, their responses to most pathogens, especially plant viruses, remain unclear. Here, we aimed to identify UGTs in the whole genome of Nicotiana benthamiana (N. benthamiana) and to analyze their function in Chinese wheat mosaic virus (CWMV) infection. A total of 147 NbUGTs were identified in N. benthamiana. To conduct a phylogenetic analysis, the UGT protein sequences of N. benthamiana and Arabidopsis thaliana were aligned. The gene structure and conserved motifs of the UGTs were also analyzed. Additionally, the physicochemical properties and predictable subcellular localization were examined in detail. Analysis of cis-acting elements in the putative promoter revealed that NbUGTs were involved in temperature, defense, and hormone responses. The expression levels of 20 NbUGTs containing defense-related cis-acting elements were assessed in CWMV-infected N. benthamiana, revealing a significant upregulation of 8 NbUGTs. Subcellular localization analysis of three NbUGTs (NbUGT12, NbUGT16 and NbUGT17) revealed their predominant localization in the cytoplasm of N. benthamiana leaves, and NbUGT12 was also distributed in the chloroplasts. CWMV infection did not alter the subcellular localization of NbUGT12, NbUGT16, and NbUGT17. Transient overexpression of NbUGT12, NbUGT16, and NbUGT17 enhanced CWMV infection, whereas the knockdown of NbUGT12, NbUGT16 and NbUGT17 inhibited CWMV infection in N. benthamiana. These NbUGTs could serve as potential susceptibility genes to facilitate CWMV infection. Overall, the findings throw light on the evolution and function of NbUGTs.
Assuntos
Resistência à Doença , Regulação da Expressão Gênica de Plantas , Glicosiltransferases , Nicotiana , Filogenia , Doenças das Plantas , Proteínas de Plantas , Nicotiana/virologia , Nicotiana/genética , Doenças das Plantas/virologia , Doenças das Plantas/genética , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Resistência à Doença/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta , Difosfato de Uridina/metabolismo , Potyvirus/genética , Potyvirus/fisiologia , Estudo de Associação Genômica AmplaRESUMO
This study unveils a machine learning (ML)-assisted framework designed to optimize the stacking sequence and orientation of carbon fiber-reinforced polymer (CFRP)/metal composite laminates, aiming to enhance their mechanical properties under quasi-static loading conditions. This work pioneers the expansion of initial datasets for ML analysis in the field by uniquely integrating the experimental results with finite element simulations. Nine ML models, including XGBoost and gradient boosting, were assessed for their precision in predicting tensile and bending strengths. The findings reveal that the XGBoost and gradient boosting models excel in tensile strength prediction due to their low error rates and high interpretability. In contrast, the decision trees, K-nearest neighbors (KNN), and random forest models show the highest accuracy in bending strength predictions. Tree-based models demonstrated exceptional performance across various metrics, notably for CFRP/DP590 laminates. Additionally, this study investigates the impact of layup sequences on mechanical properties, employing an innovative combination of ML, numerical, and experimental approaches. The novelty of this study lies in the first-time application of these ML models to the performance optimization of CFRP/metal composites and in providing a novel perspective through the comprehensive integration of experimental, numerical, and ML methods for composite material design and performance prediction.
RESUMO
As a vital material utilized in energy storage capacitors, dielectric ceramics have widespread applications in high-power pulse devices. However, the development of dielectric ceramics with both high energy density and efficiency at high temperatures poses a significant challenge. In this study, we employ high-entropy strategy and band gap engineering to enhance the energy storage performance in tetragonal tungsten bronze-structured dielectric ceramics. The high-entropy strategy fosters cation disorder and disrupts long-range ordering, consequently regulating relaxation behavior. Simultaneously, the reduction in grain size, elevation of conductivity activation energy, and increase in band gap collectively bolster the breakdown electric strength. This cascade effect results in outstanding energy storage performance, ultimately achieving a recoverable energy density of 8.9 J cm-3 and an efficiency of 93% in Ba0.4Sr0.3Ca0.3Nb1.7Ta0.3O6 ceramics, which also exhibit superior temperature stability across a broad temperature range up to 180 °C and excellent cycling reliability up to 105. This research presents an effective method for designing tetragonal tungsten bronze dielectric ceramics with ultra-high comprehensive energy storage performance.
RESUMO
Nucleotide-binding leucine-rich repeat (NLR) proteins contribute widely to plant immunity by regulating defense mechanisms through the elicitation of a hypersensitive response (HR). Here, we find that TaRACK1B (the receptor for activated C-kinase 1B) regulates wheat immune response against Chinese wheat mosaic virus (CWMV) infection. TaRACK1B recruits TaSGT1 and TaHSP90 to form the TaRACK1B-TaSGT1-TaHSP90 complex. This complex is essential for maintaining NLR proteins' stability (TaRGA5-like and TaRGH1A-like) in order to control HR activation and inhibit viral infection. However, the cysteine-rich protein encoded by CWMV can disrupt TaRACK1B-TaSGT1-TaHSP90 complex formation, leading to the reduction of NLR-protein stability and suppression of HR activation, thus promoting CWMV infection. Interestingly, the 7K protein of wheat yellow mosaic virus also interferes with this antiviral immunity. Our findings show a shared viral counter-defense strategy whereby two soil-borne viruses may disrupt the TaRACK1B-TaSGT1-TaHSP90 complex, suppressing NLR-protein-mediated broad-spectrum antiviral immunity and promoting viral infection in wheat.
Assuntos
Proteínas NLR , Doenças das Plantas , Imunidade Vegetal , Proteínas de Plantas , Triticum , Triticum/imunologia , Triticum/virologia , Triticum/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/imunologia , Proteínas de Plantas/genética , Doenças das Plantas/virologia , Doenças das Plantas/imunologia , Proteínas NLR/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Ligação ProteicaRESUMO
Wheat yellow mosaic virus (WYMV), a soil-borne pathogen, poses a serious threat to global wheat production. Here, we identify a WYMV resistance gene, TaRD21A, that belongs to the papain-like cysteine protease family. Through genetic manipulation of TaRD21A expression, we establish its positive role in the regulation of wheat to WYMV resistance. Furthermore, our investigation shows that the TaRD21A-mediated plant antiviral response relies on the release of a small peptide catalyzed by TaRD21A protease activity. To counteract wheat resistance, WYMV-encoded nuclear inclusion protease-a (NIa) suppress TaRD21A activity to promote virus infection. In resistant cultivars, a natural variant of TaRD21A features a glycine-to-threonine substitution and this substitution enables the phosphorylation of threonine, thereby weakening the interaction between NIa and TaRD21A, reinforcing wheat resistance against WYMV. Our study not only unveils a WYMV resistance gene but also offers insights into the intricate mechanisms underpinning resistance against WYMV.
Assuntos
Vírus do Mosaico , Potyviridae , Triticum/genética , Papaína , Sinais Direcionadores de Proteínas , Potyviridae/genética , Vírus do Mosaico/genética , Treonina , Doenças das Plantas/genéticaRESUMO
The type and content of amino acids in pepper are important indicators to reflect its nutritional value, largely affecting the purchasing behavior of consumers. Understanding the biosynthesis of amino acids in pepper fruit is beneficial to the development of pepper functional food. Widely targeted metabolomics, transcriptome analysis, correlation analysis, weighted gene co-expression network analysis (WGCNA), and canonical correlation analysis (CCA) were used to evaluate the quality characteristics of green and red pepper amino acids. The results showed 78 kinds of amino acids and their derivatives in the fruit of pepper. The essential amino acids were comprehensive and abundant. Especially, the contents of lysine and tryptophan were high. However, significant differences were found in the ratio of essential amino acids to total amino acids in green and red pepper. The ratio of essential amino acids to total amino acids in red pepper was up to 28.88%, while that in green pepper was up to 17.69%. WGCNA and CCA analyses were performed in combination with amino acid metabolism profiling and transcriptome analysis to further identify the main contributors to amino acid synthesis in green and red pepper. The results showed PK and PFK were the genes in the backbone of the amino acid biosynthesis pathway, which had a direct impact on the synthesis of various amino acids, and were the main genes for amino acid synthesis in pepper fruit. In this study, the amino acid biosynthesis rules for two kinds of pepper were analyzed by amino acid metabolism profiling and transcriptome analysis, which provided the basis for the development of amino acid nutritional supplements and pepper functional food.
Assuntos
Capsicum , Aminoácidos/metabolismo , Aminoácidos Essenciais , Capsicum/metabolismo , Frutas/metabolismo , Perfilação da Expressão GênicaRESUMO
Sandwich panel is increasingly used as lightweight energy absorbing components, which provides excellent crashworthiness performance with the three-dimensional periodic core. This paper investigates 3D-printed bio-inspired spherical-roof cubic cores with multi-walled carbon nanotubes (MWCNT) and foam-filled cores under quasi-static loading. The proposed bio-inspired spherical-roof cubic cores with 1.5 mm wall thickness were manufactured using the fused filament fabrication process, which used 70% polylactic acid (PLA) and 30% carbon fiber filament. Moreover, four groups of 3D-printed bio-inspired spherical-roof cubic cores were compared and analyzed on compressive properties and failure behavior. Experimental results were shown that foam-filled double bio-inspired spherical-roof cubic core with MWCNT was the maximum Fpeak with 1.92 kN, which provided a much more stable plateau load and better energy-absorbing characteristics. In addition, it is conducted that a double bio-inspired spherical-roof cubic core with four notches core is considered as the potential energy-absorbing core.