Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(2): e2304404, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37670529

RESUMO

Cyano-rich g-C3 N4 materials are widely used in various fields of photochemistry due to the very powerful electron-absorbing ability and electron storage function of cyano, as well as its advantages in improving light absorption, adjusting the energy band structure, increasing the polarization rate and electron density in the structure, active site concentration, and promoting oxygen activation ability. Notwithstanding, there is yet a huge knowledge break in the design, preparation, detection, application, and prospect of cyano-rich g-C3 N4 . Accordingly, an overall review is arranged to substantially comprehend the research progress and position of cyano-rich g-C3 N4 materials. An overall overview of the current research position in the synthesis, characterization (determination of their location and quantity), application, and reaction mechanism analysis of cyano-rich g-C3 N4 materials to provide a quantity of novel suggestions for cyano-modified carbon nitride materials' construction is provided. In view of the prevailing challenges and outlooks of cyano-rich g-C3 N4 materials, this paper will purify the growth direction of cyano-rich g-C3 N4 , to achieve a more in-depth exploration and broaden the applications of cyano-rich g-C3 N4 .

2.
Small ; 20(15): e2304574, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38009795

RESUMO

Direct selective transformation of greenhouse methane (CH4) to liquid oxygenates (methanol) can substitute energy-intensive two-step (reforming/Fischer-Tropsch) synthesis while creating environmental benefits. The development of inexpensive, selective, and robust catalysts that enable room temperature conversion will decide the future of this technology. Single-atom catalysts (SACs) with isolated active centers embedded in support have displayed significant promises in catalysis to drive challenging reactions. Herein, high-density Ni single atoms are developed and stabilized on carbon nitride (NiCN) via thermal condensation of preorganized Ni-coordinated melem units. The physicochemical characterization of NiCN with various analytical techniques including HAADF-STEM and X-ray absorption fine structure (XAFS) validate the successful formation of Ni single atoms coordinated to the heptazine-constituted CN network. The presence of uniform catalytic sites improved visible absorption and carrier separation in densely populated NiCN SAC resulting in 100% selective photoconversion of (CH4) to methanol using H2O2 as an oxidant. The superior catalytic activity can be attributed to the generation of high oxidation (NiIII═O) sites and selective C─H bond cleavage to generate •CH3 radicals on Ni centers, which can combine with •OH radicals to generate CH3OH.

3.
Chem Soc Rev ; 52(22): 7687-7706, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37877319

RESUMO

Atomically thin sheets (e.g., graphene and monolayer molybdenum disulfide) are ideal optical and reaction platforms. They provide opportunities for deciphering some important and often elusive photocatalytic phenomena related to electronic band structures and photo-charges. In parallel, in such thin sheets, fine tuning of photocatalytic properties can be achieved. These include atomic-level regulation of electronic band structures and atomic-level steering of charge separation and transfer. Herein, we review the physics and chemistry of electronic band structures and photo-charges, as well as their state-of-the-art characterization techniques, before delving into their atomic-level deciphering and mastery on the platform of atomically thin sheets.

4.
J Am Chem Soc ; 145(14): 8052-8063, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36994816

RESUMO

Single atom catalysts (SACs) possess unique catalytic properties due to low-coordination and unsaturated active sites. However, the demonstrated performance of SACs is limited by low SAC loading, poor metal-support interactions, and nonstable performance. Herein, we report a macromolecule-assisted SAC synthesis approach that enabled us to demonstrate high-density Co single atoms (10.6 wt % Co SAC) in a pyridinic N-rich graphenic network. The highly porous carbon network (surface area of ∼186 m2 g-1) with increased conjugation and vicinal Co site decoration in Co SACs significantly enhanced the electrocatalytic oxygen evolution reaction (OER) in 1 M KOH (η10 at 351 mV; mass activity of 2209 mA mgCo-1 at 1.65 V) with more than 300 h stability. Operando X-ray absorption near-edge structure demonstrates the formation of electron-deficient Co-O coordination intermediates, accelerating OER kinetics. Density functional theory (DFT) calculations reveal the facile electron transfer from cobalt to oxygen species-accelerated OER.

5.
Angew Chem Int Ed Engl ; 62(13): e202218016, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36593736

RESUMO

Two-dimensional (2D) transition metal dichalcogenides (TMDs), a rising star in the post-graphene era, are fundamentally and technologically intriguing for photocatalysis. Their extraordinary electronic, optical, and chemical properties endow them as promising materials for effectively harvesting light and catalyzing the redox reaction in photocatalysis. Here, we present a tutorial-style review of the field of 2D TMDs for photocatalysis to educate researchers (especially the new-comers), which begins with a brief introduction of the fundamentals of 2D TMDs and photocatalysis along with the synthesis of this type of material, then look deeply into the merits of 2D TMDs as co-catalysts and active photocatalysts, followed by an overview of the challenges and corresponding strategies of 2D TMDs for photocatalysis, and finally look ahead this topic.

6.
Small ; 17(49): e2103521, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34655150

RESUMO

The ultrastretchable (over 12 400%) hydrogel with long-lasting adhesion, strong antibacterial activity, and robust spinnability is developed based on the oxidative decarboxylation and quinone-catechol reversible redox reaction induced by Ag-lignin nanoparticles in a precursor solution containing citric acid (CA), acrylic acid (AA), and poly (acrylamide-co-acrylic acid) (P(AAm-co-AA)). With massive reversible interactions including hydrogen bonds and electrostatic forces, such hydrogel exhibits promising injectability and is facilely spun via manual drawing, draw-spinning, and electrospinning for manufacturing strong hydrogel micro/nanofibers. The resulting fibers exhibit excellent mechanical properties, including tensile stress of 422.0 MPa, strain of 86.5%, Young's modulus of 8.7 GPa, and toughness of 281.6 MJ m-3 . The hydrogel microfibers obtained from a house-built spinner are scaled-up fabricated while retaining promising mechanical properties, as evidenced by lifting a load (317.2 g) using the spun fibers of ≈33 000 times lighter weight (9.5 mg), indicating their great potentials in the applications such as net and safety cord which require robust mechanical properties. Moreover, assisted by a commercial electrospinning machine, nanosized hydrogel fibers are facilely spun on personal protective equipment such as a mask to offer an antiseptic coating with near 100% killing efficiency against airborne bacteria aerosols, demonstrating the capability of spun hydrogel fibers on disinfection-related applications.


Assuntos
Nanofibras , Adesivos , Antibacterianos/farmacologia , Módulo de Elasticidade , Hidrogéis
7.
Langmuir ; 37(2): 810-819, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33406359

RESUMO

Lipase-immobilized cellulosic capsules consisting of hydrophobic ethyl cellulose (EC) and hydrophilic carboxymethyl cellulose (CMC) were developed with a promising interfacial activity and water absorbency for the enhanced Pickering interfacial biocatalysis. Lipase was physically immobilized with water-absorbent materials (CMC) via hydrogen bonding and electrostatic interactions and acted as the interior catalytic core of the capsule. The interfacially active EC worked as the exterior shell, enabling capsules to stabilize the oil-in-water Pickering emulsion for the subsequent Pickering interfacial catalysis. The capsules with CMC created interior water-rich conditions to improve the conformational and enzymatic activity of the immobilized lipase. Compared with capsules without water-absorbent materials, the capsules with CMC enhanced the efficiency of the Pickering interfacial catalysis for the esterification of oleic acid and 1-octanol by 12%. Immobilized with a small amount of lipase (0.0625 g/g), the cellulosic capsules with water absorbency could convert 50.8% of the reactants after 10 h under room temperature, significantly higher than that by the same amount of free lipase in the biphasic system (15%) and a Pickering emulsion (24.1%) stabilized by empty capsules (without lipase). Moreover, the cellulosic capsules could be recycled by simple centrifugation while retaining their high relative catalytic activity for at least eight cycles, demonstrating their sustainable catalytic performance.


Assuntos
Lipase , Água , Biocatálise , Cápsulas , Enzimas Imobilizadas/metabolismo , Esterificação , Lipase/metabolismo
8.
Water Sci Technol ; 84(12): 3641-3652, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34928832

RESUMO

The present study deals with the synthesis of zeolite-loaded FeOOH@ZnO by hydrothermal method and investigates the effects of coexisting SO32- and PO43- ions in the aqueous solution on the adsorption performance for S2-. The results showed that the HNO3-modified zeolite loaded with FeOOH@ZnO (FeOOH@ZnO/HZ) resulted in a maximum S2- removal rate of ≈98%. The adsorbent's performance on removing S2- was significantly enhanced, compared with NaOH and ZnCl2-modified zeolites loaded with FeOOH@ZnO, and the adsorption was proved to be a heat-absorbing process. When SO32- and PO43- coexisted with S2-, SO32- and PO43- had a significant influence on the adsorption properties of FeOOH@ZnO/HZ. When three ions of S2-, SO32- and PO43- were present simultaneously, the adsorption performance of FeOOH@ZnO/HZ on S2- was further, and the removal rate dropped to about 80%. Moreover, FeOOH@ZnO/HZ also adsorbed PO43- and SO32- in the system containing multiple ions, but the adsorption rates of PO43- and SO32- were much lower than S2-. This indicated that the adsorption of S2- in the presence of FeOOH@ZnO/HZ dominates under competitive conditions.


Assuntos
Zeolitas , Óxido de Zinco , Adsorção
9.
Soft Matter ; 2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32909581

RESUMO

Lignin nanospheres (LNPs) are an emerging high-value material platform to realize lignin valorization. The modification or introduction of new functions to LNPs is of great significance to expand its downstream applications. This work evaluated the technical feasibility of preparing lignin-xylan hybrid nanospheres (LXNPs) through a simple solution-based self-assembly process, with the goal of achieving the application as pesticide carriers for enzyme-mediated controlled release. Hybrid LXNPs with various weigh ratios (lignin to xylan, 3 : 1, 1 : 1, 1 : 3) were obtained using deep eutectic solvent-extracted condensed lignin and water-insoluble xylan fragments, which exhibited a nanosphere size of about 166-210 nm with considerable stability in the pH range of 4-10. LXNPs with lignin to xylan ratios of 3 : 1 and 1 : 1 showed well-defined core-shell structures with enriched hydroxyl groups on the surface. It was proposed that lignin could anchor xylan fragments through van der Waals force and hydrophobic interactions between lignin phenylpropanes and xylan molecular backbones, thus facilitating the self-assembly process for the formation of this specific spherical structure. The resulting hydrophobic LXNPs core enabled the facile encapsulation of the biological pesticide avermectin (AVM) with 57.9-67.0% efficiency using one-pot synthesis. When these AVM-encapsulated LXNPs were subjected to enzymatic hydrolysis using xylanase, considerable AVM release of 44.8-55.1% was achieved after 16 h, in comparison to the 4.1% release only for those without xylanase. This work showed the high promise of fabricating hybrid LXNPs through the self-assembly process and also provided a universal nanosphere carrier for drug encapsulation and subsequent enzyme-mediated controlled release.

10.
J Bioenerg Biomembr ; 49(5): 347-355, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28643238

RESUMO

Regulator of the H+-ATPase of the vacuolar and endosomal membranes (RAVE) is essential for the reversible assembly of H+-ATPase. RAVE primarily consists of three subunits: Rav1p, Rav2p and Skp1p. To characterize these subunits, in this study, four strains derived from Saccharomyces cerevisiae BY4742 were constructed with a FLAG tag on the Rav1p and Rav2p subunits. Then, the corresponding RAVE containing complex was isolated by affinity purification. Western blot and MALDI-TOF mass spectrometry analyses showed that the RAVE complex contains not only the known V1-ATPase subunits (Vma1p and Vma2p) but also a newly found Leu1p that interacts with the RAVE subunit. Furthermore, we constructed rav1-/rav2-/vma2-/leu1-deficient recombinants by fusion PCR and homologous recombination and demonstrated that leu1 is indispensable in adjusting the microbial cell to adverse environments and that the function is similar to that of rav1/rav2 but significantly differs from that of vma2. Leu1p probably plays an important role in RAVE regulation of V-ATPase activity in conjunction with RAVE.


Assuntos
Endossomos/ultraestrutura , Membranas Intracelulares/enzimologia , ATPases Vacuolares Próton-Translocadoras/metabolismo , Vacúolos/ultraestrutura , Endossomos/enzimologia , Subunidades Proteicas , Proteínas de Saccharomyces cerevisiae/fisiologia , Vacúolos/enzimologia
11.
Biotechnol Bioeng ; 114(11): 2489-2496, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28691220

RESUMO

Effective enzyme-mediated viscosity reduction, disaggregation, or "liquefaction," is required to overcome the rheological challenges resulting from the fibrous, hygroscopic nature of lignocellulosic biomass, particularly at the high solids loadings that will be required for an economically viable process. However, the actual mechanisms involved in enzyme-mediated liquefaction, as determined by viscosity or yield stress reduction, have yet to be fully resolved. Particle fragmentation, interparticle interaction, material dilution, and water-retention capacity were compared for their ability to quantify enzyme-mediated liquefaction of model and more realistic pretreated biomass substrates. It was apparent that material dilution and particle fragmentation occurred simultaneously and that both mechanisms contributed to viscosity/yield stress reduction. However, their relative importance was dependent on the nature of the biomass substrate. Interparticle interaction and enzyme-mediated changes to these interactions was shown to have a significant effect on slurry rheology. Liquefaction was shown to result from the combined action of material dilution, particle fragmentation, and alteration of interactions at particle surfaces. However, the observed changes in water retention capacity did not correlate with yield stress reduction. The relative importance of each mechanism was significantly influenced by the nature of the biomass substrate and its physicochemical properties. An ongoing challenge is that mechanisms, such as refining, which enhance enzyme accessibility to the cellulosic component of the substrate, are detrimental to slurry rheology and will likely impede enzyme-mediated liquefaction when high substrate concentrations are used.


Assuntos
Lignina/química , Modelos Químicos , Populus/química , Soluções/química , Água/química , Absorção Fisico-Química , Biomassa , Ativação Enzimática , Lipase/química , Especificidade por Substrato , Viscosidade
12.
J Biol Chem ; 290(5): 2938-45, 2015 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-25527502

RESUMO

Although the actions of many of the hydrolytic enzymes involved in cellulose hydrolysis are relatively well understood, the contributions that amorphogenesis-inducing proteins might contribute to cellulose deconstruction are still relatively undefined. Earlier work has shown that disruptive proteins, such as the non-hydrolytic non-oxidative protein Swollenin, can open up and disaggregate the less-ordered regions of lignocellulosic substrates. Within the cellulosic fraction, relatively disordered, amorphous regions known as dislocations are known to occur along the length of the fibers. It was postulated that Swollenin might act synergistically with hydrolytic enzymes to initiate biomass deconstruction within these dislocation regions. Carbohydrate binding modules (CBMs) that preferentially bind to cellulosic substructures were fluorescently labeled. They were imaged, using confocal microscopy, to assess the distribution of crystalline and amorphous cellulose at the fiber surface, as well as to track changes in surface morphology over the course of enzymatic hydrolysis and fiber fragmentation. Swollenin was shown to promote targeted disruption of the cellulosic structure at fiber dislocations.


Assuntos
Celulase/metabolismo , Celulose/química , Celulose/metabolismo , Lignina/química , Lignina/metabolismo , Microscopia Confocal , Ligação Proteica , Difração de Raios X
13.
J Colloid Interface Sci ; 659: 520-532, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38184994

RESUMO

The novel composite photocatalytic material perylene diimides/Fe2O3@C (PDIs/Fe2O3@C) was constructed by a simple hydrothermal-calcination method and an oil bath method. 20 % PDIs/Fe2O3@C displayed a 16.4-fold increase in the rate of tetracycline (TC) removal over Fe2O3@C at 8 min. The main factor that enhanced photocatalytic performance was due to the combination of PDIs with Fe2O3@C, which effectively improved the phenomenon during the self-assembly of highly agglomerative PDIs, increased the specific surface area of Fe2O3@C, exposed more reaction sites, and promoted the activation of peroxymonosulfate (PMS) by Fe2+/Fe3+; and secondly, the composite of two different materials, both organic and inorganic, which effectively promoted the photogenerated electron transfer and the separation of electron-hole pairs, the a new S-scheme electron transport pathway is formed, which effectively promoted the photogenerated electron transfer as well as the e--h+ separation, which was more favorable for the activation of PMS. The whole reaction pathway and product toxicity were thoroughly evaluated by Fukui function calculations, Liquid Chromatograph Mass Spectrometer (LC-MS), and Toxicity Estimation Software Tool (T.E.S.T.) simulation results, which demonstrated the rationality of the degradation pathway and the greatly reduced product toxicity. Moreover, the composites were effective and versatile for all other antibiotics (chlortetracycline (CTC), ciprofloxacin (CIP) and sulfadiazine (SDZ)). As an advanced oxidation process, the activation of PDIs/Fe2O3@C under visible light shows its potential application in pollutant degradation, which provides new perspectives and ideas for further effective treatment of real wastewater.


Assuntos
Antibacterianos , Peróxidos , Perileno , Antibacterianos/farmacologia , Elétrons , Luz
14.
ACS Sens ; 9(2): 799-809, 2024 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-38148619

RESUMO

This research focuses on developing and validating a wearable electrochemical biosensor called the concatenated aptamer integrated skin patch, also known as the Captain Patch. The main objective is to detect cortisol levels in sweat, which can provide valuable insights into an individual's health. The biosensor utilizes a corrugated surface that mimics the skin, allowing for better attachment and an improved electrochemical performance. The study demonstrates the successful application of Captain Patch on the human body by using artificially spiked sweat samples. The results indicate good measurement accuracy and conformity when the patch is worn on the body. However, for long-term usage, the patch needs to be changed every 3-4 h or worn three times a day to enable monitoring of cortisol levels. Despite the need for frequent patch changes, the cost-effectiveness and ease of operation make these skin patches suitable for longitudinal cortisol monitoring and other sweat analytes. By customization of the biorecognition probe, the developed biowearable can be used to monitor a variety of vital biomarkers. Overall, Captain Patch, with its capability of detecting specific health markers such as cortisol, hints at the future potential of wearables to offer valuable data on various other biomarkers. Our approach presents the first step in integrating a cost-effective wearable electrochemical patch integrated with a redox-concatenated aptamer for noninvasive biomarker detection. This personalized approach to monitoring can lead to improved patient outcomes and increased patient engagement in managing their health.


Assuntos
Técnicas Biossensoriais , Dispositivos Eletrônicos Vestíveis , Humanos , Hidrocortisona , Técnicas Biossensoriais/métodos , Oxirredução , Biomarcadores
15.
Adv Colloid Interface Sci ; 329: 103176, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38761603

RESUMO

Single-atom catalysts (SACs) with active metals dispersed atomically have shown great potential in heterogeneous catalysis due to the high atomic utilization and superior selectivity/stability. Synthesis of SACs using carbon-neutral biomass and its components as the feedstocks provides a promising strategy to realize the sustainable and cost-effective SACs preparation as well as the valorization of underused biomass resources. Herein, we begin by describing the general background and status quo of carbon-based SACs derived from biomass. A detailed enumeration of the common biomass feedstocks (e.g., lignin, cellulose, chitosan, etc.) for the SACs preparation is then offered. The interactions between metal atoms and biomass-derived carbon carriers are summarized to give general rules on how to stabilize the atomic metal centers and rationalize porous carbon structures. Furthermore, the widespread adoption of catalysts in diverse domains (e.g., chemocatalysis, electrocatalysis and photocatalysis, etc.) is comprehensively introduced. The structure-property relationships and the underlying catalytic mechanisms are also addressed, including the influences of metal sites on the activity and stability, and the impact of the unique structure of single-atom centers modulated by metal/biomass feedstocks interactions on catalytic activity and selectivity. Finally, we end this review with a look into the remaining challenges and future perspectives of biomass-based SACs. We expect to shed some light on the forthcoming research of carbon-based SACs derived from biomass, manifestly stimulating the development in this emerging research area.


Assuntos
Biomassa , Carbono , Catálise , Carbono/química , Metais/química
16.
Int J Biol Macromol ; 259(Pt 2): 129138, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38171445

RESUMO

Efficient fractionation of lignocellulosic biomass in usable forms of hemicellulose, cellulose and lignin is very important for the sustainable lignocellulosic biorefinery. Herein, poplar sawdust was pretreated with an integrated process composed of acetic acid pre-hydrolysis (170 °C, 60 min) for xylo-oligosaccharides (XOS) production and mild deep eutectic solvent (90-130 °C, 60 min) post-delignification for recovering lignin fractions, resulting in easily hydrolyzed cellulose fraction. Results showed that, after integrated pretreatment and enzymatic hydrolysis, 51 % of xylan and 92 % of glucan in raw biomass could be converted to XOS (DP 2-6) and glucose, respectively, while 71 % of the original lignin could be recovered in DES solvent. The resulting XOS were proven to ensure the growth of probiotics, Bifidobacterium adolescentis. Besides, the lignin macromolecules recovered from DES solvent showed high-purity (around 95 %), low-molecular weight (Mw around 2000), small particle size (270-170 nm) and high-PhOH (3.08 mmol/g) content, which were likely relevant to the excellent antioxidant activity (RSI = 15.16) and adsorbent activity (Pb(II) 461.89 mg/g lignin). Finally, mass balance and energy analysis revealed that the integrated pretreatment could be used as a promising approach for the production of bio-based chemicals and materials from woody biomass.


Assuntos
Lignina , Açúcares , Antioxidantes/farmacologia , Solventes Eutéticos Profundos , Ácido Acético , Solventes , Celulose , Oligossacarídeos , Hidrólise , Biomassa
17.
ACS Nano ; 18(21): 13568-13582, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38723039

RESUMO

Transition metal oxides are promising catalysts for catalytic oxidation reactions but are hampered by low room-temperature activities. Such low activities are normally caused by sparse reactive sites and insufficient capacity for molecular oxygen (O2) activation. Here, we present a dual-stimulation strategy to tackle these two issues. Specifically, we import highly dispersed nickel (Ni) atoms onto MnO2 to enrich its oxygen vacancies (reactive sites). Then, we use molecular ozone (O3) with a lower activation energy as an oxidant instead of molecular O2. With such dual stimulations, the constructed O3-Ni/MnO2 catalytic system shows boosted room-temperature activity for toluene oxidation with a toluene conversion of up to 98%, compared with the O3-MnO2 (Ni-free) system with only 50% conversion and the inactive O2-Ni/MnO2 (O3-free) system. This leap realizes efficient room-temperature catalytic oxidation of transition metal oxides, which is constantly pursued but has always been difficult to truly achieve.

18.
Polymers (Basel) ; 15(18)2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37765666

RESUMO

Blood vessels are crucial in the human body, providing essential nutrients to all tissues while facilitating waste removal. As the incidence of cardiovascular disease rises, the demand for efficient treatments increases concurrently. Currently, the predominant interventions for cardiovascular disease are autografts and allografts. Although effective, they present limitations including high costs and inconsistent success rates. Recently, synthetic vascular grafts, made from artificial materials, have emerged as promising alternatives to traditional methods. Among these materials, bacterial cellulose hydrogel exhibits significant potential for tissue engineering applications, particularly in developing nanoscale platforms that regulate cell behavior and promote tissue regeneration, attributed to its notable physicochemical and biocompatible properties. This study reviews recent progress in fabricating engineered vascular grafts using bacterial nanocellulose, demonstrating the efficacy of bacterial cellulose hydrogel as a biomaterial for synthetic vascular grafts, specifically for stimulating angiogenesis and neovascularization.

19.
J Hazard Mater ; 448: 130988, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36860059

RESUMO

Developing the lignin-based functional materials for uranium uptake is extremely attractive, but challenging due to the complex structure, poor solubility and reactivity of lignin. Herein, a novel phosphorylated lignin (LP)/sodium alginate/ carboxylated carbon nanotube (CCNT) composite aerogel (LP@AC) with vertically oriented lamellar configuration was created for efficient uranium uptake from acidic wastewater. The successful phosphorylation of lignin by a facile solvent-free mechanochemical method achieved more than six-times enhancement in U(VI) uptake capacity of lignin. While, the incorporation of CCNT not only increased the specific surface area of LP@AC, but also improved its mechanical strength as a reinforcing phase. More importantly, the synergies between LP and CCNT components endowed LP@AC with an excellent photothermal performance, resulting in a local heat environment on LP@AC and further boosting the U(VI) uptake. Consequently, the light irradiated LP@AC exhibited an ultrahigh U(VI) uptake capacity (1308.87 mg g-1), 61.26% higher than that under dark condition, excellent adsorptive selectivity and reusability. After exposure to 10 L of simulated wastewater, above 98.21% of U(VI) ions could be rapidly captured by LP@AC under light irradiation, revealing the tremendous feasibility in industrial application. The electrostatic attraction and coordination interaction were considered as the main mechanism for U(VI) uptake.

20.
Biotechnol Adv ; 66: 108157, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37084800

RESUMO

Lignocellulosic biomass valorization is regarded as a promising approach to alleviate energy crisis and achieve carbon neutrality. Bioactive enzymes have attracted great attention and been commonly applied for biomass valorization owing to their high selectivity and catalytic efficiency under environmentally benign reaction conditions. Same as biocatalysis, photo-/electro-catalysis also happens at mild conditions (i.e., near ambient temperature and pressure). Therefore, the combination of these different catalytic approaches to benefit from their resulting synergy is appealing. In such hybrid systems, harness of renewable energy from the photo-/electro-catalytic compartment can be combined with the unique selectivity of biocatalysts, therefore providing a more sustainable and greener approach to obtain fuels and value-added chemicals from biomass. In this review, we firstly introduce the pros/cons, classifications, and the applications of photo-/electro-enzyme coupled systems. Then we focus on the fundamentals and comprehensive applications of the most representative biomass-active enzymes including lytic polysaccharide monooxygenases (LPMOs), glucose oxidase (GOD)/dehydrogenase (GDH) and lignin peroxidase (LiP), together with other biomass-active enzymes in the photo-/electro- enzyme coupled systems. Finally, we propose current deficiencies and future perspectives of biomass-active enzymes to be applied in the hybrid catalytic systems for global biomass valorization.


Assuntos
Lignina , Biomassa , Catálise , Biocatálise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA